

ESL

ESL Simulation Software
Development Guide

ESL Simulation Software - Development Guide ii

Copyright © ISIM International Simulation Limited 2023 – All Rights Reserved

Document Information

Version: 1.9.3.
Date Published: March 2023.

This document relates to ESL version 8.3.0

ISIM welcomes any suggestions to improve
the ESL Simulation Software and documentation

If you have any suggestions, or would like to point out
any errors or omissions, please contact us:

ISIM International Simulation Limited

161 Claremont Road
Salford
M6 8PA
UK

Tel: +44 (0) 161-736-5283

Email: info@isimsimulation.com
Web: https://www.isimsimulation.com

 Table of Contents

ESL Simulation Software - Development Guide iii

Table of Contents
1 Introduction .. 1-1

1.1 The Simulation Language (ESL) .. 1-1
1.2 ESL-Studio ... 1-2
1.3 Translator Options .. 1-2
1.3.1 Windows FORTRAN Compiler ... 1-2
1.3.2 Windows C++ Compiler .. 1-3
1.4 Document Conventions .. 1-4
1.5 User Liability ... 1-4

2 ESL-Studio .. 2-6
2.1 The Main ESL-Studio Window ... 2-6
2.2 Menus ... 2-7
2.2.1 File .. 2-7
2.2.2 Edit .. 2-7
2.2.3 View .. 2-7
2.2.4 Insert ... 2-7
2.2.5 Simulate .. 2-7
2.2.6 Help ... 2-8

3 ESL Basic Use .. 3-9
3.1 ESL Suite of Programs ... 3-9
3.2 ESL Commands ... 3-10
3.2.1 Basic Commands .. 3-11
3.2.2 Command parameters .. 3-14
3.2.3 Files produced by ESL .. 3-15
3.2.4 File access .. 3-16
3.2.5 Using ESL commands .. 3-16
3.2.6 Compiler and Interpreter ... 3-17
3.2.7 Compiler and Translator ... 3-18
3.2.8 User interaction ... 3-19
3.2.9 Post Run graphical analysis ... 3-19
3.3 An ESL Program - Line-by-Line ... 3-20
3.3.1 The program ... 3-20
3.3.2 Lexical components .. 3-22
3.3.3 Comments ... 3-23
3.3.4 Include files ... 3-23
3.3.5 Program structure and modules ... 3-24
3.3.6 PACKAGE definition ... 3-25
3.3.7 Reserved PACKAGE .. 3-25
3.3.8 Run specification ... 3-26
3.3.9 Integration selection .. 3-27
3.3.10 Model definition ... 3-28
3.3.11 Results from the ESL example ... 3-37

4 ESL Operation and Program Structure .. 4-1
4.1 ESL Program Types ... 4-1
4.1.1 The ESL STUDY ... 4-1
4.1.2 The ESL REMOTE program ... 4-2
4.1.3 The ESL EMBEDDED program .. 4-2
4.1.4 The ESL non program... 4-3
4.2 ESL Program Structures... 4-3
4.2.1 ESL data types .. 4-3
4.2.2 The ESL experiment ... 4-4
4.2.3 The ESL MODEL .. 4-4
4.2.4 The ESL SUBMODEL ... 4-5
4.2.5 The ESL SEGMENT ... 4-6

Chapter 1 Introduction

ESL Simulation Software - Development Guide iv

4.2.6 The ESL PROCEDURE .. 4-7
4.2.7 The ESL PACKAGE .. 4-7
4.3 Procedural Subprogram Structure .. 4-8
4.4 Modelling Subprogram Structure .. 4-10
4.4.1 Modelling code .. 4-10
4.4.2 Procedural code .. 4-10
4.4.3 Modelling subprogram regions ... 4-11
4.5 Variables - scope, type and usage ... 4-13
4.5.1 Model parameters ... 4-13
4.5.2 State variables .. 4-15
4.5.3 Algebraic variables .. 4-17
4.5.4 Procedural variables ... 4-17
4.5.5 CONSTANTS .. 4-18
4.5.6 ESL PARAMETERS ... 4-18
4.6 The Simulation Process.. 4-19
4.6.1 The model functions .. 4-19
4.6.2 Sorting modelling code ... 4-20
4.6.3 Submodel data store ... 4-22
4.6.4 Initialisation sequence... 4-22
4.6.5 COMMUNICATION code .. 4-24
4.6.6 STEP code .. 4-24

5 Modelling Code .. 5-1
5.1 Differential Equations ... 5-1
5.1.1 Prime notation ... 5-1
5.1.2 Integral notation .. 5-2
5.1.3 Submodel representation .. 5-2
5.1.4 Laplace transform notation ... 5-3
5.2 Integration Methods .. 5-6
5.2.1 Basis of numerical integration ... 5-6
5.2.2 ESL integration algorithms .. 5-9
5.3 Discontinuities .. 5-15
5.3.1 ESL handling of discontinuities ... 5-15
5.3.2 ESL action on discontinuity detection ... 5-17
5.3.3 Logical assignment of discontinuity .. 5-18
5.4 Partial Differential Equations .. 5-24
5.4.1 Electrical transmission line ... 5-25
5.4.2 Heat flow or diffusion .. 5-26
5.4.3 Simulating partial differential equations .. 5-27

6 Arrays, Matrices, Vectors and Characters .. 6-1
6.1 Array Declarations .. 6-1
6.1.1 Subprogram array arguments ... 6-2
6.1.2 Vector declarations ... 6-3
6.1.3 Dynamic arrays ... 6-3
6.1.4 Array initialisation .. 6-3
6.1.5 Printing arrays ... 6-4
6.2 Array Subscripts ... 6-6
6.3 Array Slicing ... 6-6
6.4 Array Operations .. 6-8
6.4.1 Array assignment .. 6-8
6.4.2 Character assignment ... 6-9
6.4.3 Interrogating array sizes ... 6-9
6.4.4 Numerical array (matrix) operations ... 6-9
6.4.5 Vector operations .. 6-10
6.4.6 Array functions .. 6-11
6.5 Character Array Operations ... 6-12
6.5.1 Character array functions ... 6-12
6.5.2 Character comparison... 6-13
6.5.3 Characters as subprogram arguments ... 6-13

Chapter 1 Introduction

ESL Simulation Software - Development Guide v

6.5.4 Character function procedures ... 6-13

7 Multivariable Transfer Functions ... 7-1
7.1 Introduction ... 7-1
7.2 Example 1 - Multivariable feedback control system ... 7-2
7.3 Example 2 - Coupled two-mass system ... 7-4
7.4 Limitations .. 7-6

8 Input-Output and File Handling .. 8-1
8.1 Connecting Files ... 8-1
8.1.1 Opening, creating and rewriting files .. 8-1
8.1.2 Closing file connections .. 8-2
8.2 File Deletion .. 8-3
8.3 Input/Output Error Status.. 8-3
8.4 The PRINT Statement .. 8-4
8.4.1 Data output formatting .. 8-6
8.5 The TABULATE Statement .. 8-7
8.6 The READ Statement ... 8-8
8.6.1 Free format input ... 8-8
8.6.2 Keyboard input .. 8-9
8.6.3 The READEL statement.. 8-10
8.6.4 Data input formatting... 8-11
8.6.5 READ examples .. 8-12
8.7 The PREPARE Statement .. 8-13
8.8 The PLOT Statement .. 8-14
8.9 The CLEAR_SCREEN statement .. 8-14
8.10 The ESL-Displays program .. 8-14

9 ESL Segments .. 9-1
9.1 Introduction ... 9-1
9.2 Emulated Segment Operation .. 9-2
9.2.1 The multi-processor concept .. 9-2
9.2.2 Emulated segment .. 9-3
9.2.3 Basic segment programming .. 9-4
9.3 Distributed Simulation Execution .. 9-7
9.3.1 Preparing remote segment ... 9-8
9.3.2 Main simulation or client ... 9-8
9.3.3 Configuration considerations .. 9-8
9.3.4 Segment location file... 9-9
9.3.5 Executing distributed simulation ... 9-10
9.3.6 Launching remote segment .. 9-11
9.3.7 ESL Launcher ... 9-11
9.3.8 Running remote simulation ... 9-12
9.3.9 Conclusions .. 9-13
9.4 Embedded Segments ... 9-13
9.4.1 Embedded simulation using FORTRAN ... 9-13
9.4.2 Embedded simulation using C++ .. 9-18
9.5 Generation of Interface Modules for Embedded Segments 9-22
9.5.1 Using the '-dll' option in a C (or C++) application: .. 9-25
9.5.2 Using the '-com' option in a C++ application:.. 9-26
9.5.3 Using the '-clr' option in a C# application: ... 9-26

10 Steady-State Analysis ... 10-1
10.1 Introduction ... 10-1
10.2 The ANALYSIS Region .. 10-2
10.3 The TRIM Statement .. 10-2
10.4 The LINEARIZE Statement .. 10-3
10.5 The EIGENVALUE Statement .. 10-4
10.6 The ANALYSIS MODEL Call .. 10-4
10.7 Steady-State Algorithms ... 10-5

Chapter 1 Introduction

ESL Simulation Software - Development Guide vi

10.8 Optimization .. 10-6
10.9 Two Link Robot Arm Example .. 10-7

11 ESL Run Control .. 11-1
11.1 ESL-SEC .. 11-1
11.2 INTERACT Control ... 11-2
11.3 Simulation Driver Files.. 11-5
11.4 RESUME and RESTART ... 11-6
11.5 Snapshot Support ... 11-7

12 External Procedures .. 12-1
12.1 Introduction ... 12-1
12.2 External FORTRAN and C Routines .. 12-1
12.3 External C++ Routines ... 12-9

Chapter 1 Introduction

ESL Simulation Software - Development Guide 1-1

CHAPTER 1

1 Introduction
Welcome to ESL.

ESL is a powerful and flexible software package used to simulate complex dynamic systems.
It comprises the simulation language itself – ESL and the interactive development
environment – ESL-Studio.

This manual is concerned mainly with the ESL Language and associated actions; detailed
help for ESL-Studio will be found in the ESL-Studio Help Pages.

1.1 The Simulation Language (ESL)
ESL was written to meet the simulation requirements of the European Space Agency. It is a
general-purpose Continuous System Simulation Language (CSSL) with discrete event
capabilities and may be applied in any field where dynamic systems are to be studied.

The main characteristics of ESL are:

• Provision of an Interpreter for fast program development, and a Translator (providing
C++ or FORTRAN code) for efficient production runs.

• A well-defined lexical structure.

• Separate program units may be used to describe the system and the experiment to
be performed on it.

• Modular model concepts in the form of submodels to define independent parts of the
system within a hierarchical structure.

• Parallel processor segmentation concepts to enable models to be partitioned into
segments and executed concurrently in a multiple-processor environment or on a
single computer.

• Techniques for the accurate description and detection of discontinuities.

• Steady-state finding and linearization facilities.

• Full matrix/vector operations.

• Derivative notation, integral notation and transfer-function notation for describing
differential equations.

• Comprehensive run-time and post-run graphical display of results.

• Automatic ordering of the model definition equations.

• Eight numerical integration algorithms including three stiff methods.

• Extensive diagnostic checks during compilation to determine model "correctness".

• C++, C or FORTRAN routines may be incorporated into a simulation that has been
created through the translator route.

• ESL segments that may be run embedded in a non-ESL C++ or FORTRTAN main
program (embedded segments).

• Facilities to dynamically communicate with other program modules via FORTRAN
common blocks or C++ structures.

• Full range of standard procedural facilities including file and character handling.

• Extensive library of ESL submodels which may be incorporated into user programs.

Chapter 1 Introduction

ESL Simulation Software - Development Guide 1-2

1.2 ESL-Studio
ESL-Studio is an integrated development environment for creating ESL simulations using
block diagrams and ESL source code. It is an alternative to, and replacement for to ESL's
older Integrated Simulation Environment (ISE). It may be used with either ESL-Pro or ESL-
Lite.

Using ESL-Studio's graphical user interface you can manage each stage of the simulation
activity.

ESL-Studio provides the following facilities:

• Multi-window graphical block diagram editor for model construction.

• Inclusion of ESL coded submodels where appropriate.

• Interactive control of simulation execution (via the ESL-SEC program) with run-time
graph plotting.

• Display manager with post-run graph plotting (via the ESL-Displays program).

• Sophisticated profile features allow themes for diagram appearance and for standard
and library simulation entities.

ESL-Studio includes a graphical editor for block diagram style model descriptions, while
allowing textual ESL code to be used where appropriate (for example, to describe highly non-
linear elements). You select standard simulation elements and interconnect them on a block
diagram to build up the simulation description. ESL submodels can be created and included in
a diagram through a special submodel element.

Note: ESL-Studio can allow you to import legacy ESL ISE applications into ESL-Studio
(Windows). To support this you must include the ESL ISE component when you install ESL.

Once you have created a simulation program (graphically, textually or a combination of both),
compilation is initiated from ESL-Studio. You may then execute the compiled program
immediately through an interpreter, or, for ESL-Pro, you have the option to further translate it
to C++ or FORTRAN. The resulting executable program may then be run from ESL-Studio. In
either case, execution is managed by the ESL-SEC (Simulation Execution Control) program
which provides run-time control of the simulation. You have access to all program variables
and parameters from the ESL-SEC program. This includes simulation parameters such as the
communication interval, final simulation time, choice of integration algorithm and error
tolerances. All user-declared variables and parameters can be set and changed dynamically.
You can specify graphical and tabulated output on your block diagram using special
simulation display elements or alternatively from the Runtime Displays option of ESL-SEC.
You can log all run time commands and output specifications to a driver file that can be used
later to repeat simulation scenarios.

1.3 Translator Options
To use ESL in translator mode, it is necessary to have installed an appropriate FORTRAN
and/or C++ compiler. Both options given below for Windows are or have public domain
versions.

Note that the translator mode and associated features (such as calling external routines and
embedded ESL simulations), are not available if you only have ESL-Lite installed.

1.3.1 Windows FORTRAN Compiler

For FORTRAN translation, you should install the MinGW-W64 FORTRAN compiler.

This is available in the MinGW-W64 (GCC for Windows 64 & 32 bits) software package – see
https://www.mingw-w64.org/.

Note: This package should be used for both 64bit and 32bit operating systems. The original
MinGW (32bit only) is not supported in this version of ESL.

https://www.mingw-w64.org/

Chapter 1 Introduction

ESL Simulation Software - Development Guide 1-3

We recommend installing using the MinGW-W64 Online Installer.

From the downloads page https://www.mingw-w64.org/downloads/) you can either select
"MingW-W64-builds" or directly from "Sourceforge" download the MinGW-W64 Online
Installer - mingw-w64-install.exe.

Run the MinGW-W64 Online Installer (it will require Administrator privileges) and select the
version(s) of MinGW-W64 you require:

- for a 64bit operating system, to build 64bit simulation executables, you should install:

 Version: 8.1.0
 Architecture: x86_64
 Threads: posix
 Exception: seh
 Build revision: 0

- for a 32bit operating system, or if you plan to build 32bit simulation executables (using the
esl command -32bit option) on a 64bit operating system, you should install:

 Version: 8.1.0
 Architecture: i686
 Threads: posix
 Exception: dwarf
 Build revision: 0

Note: For 64bit operating systems you may install both versions if you like.

We recommend you install on the default destination folder paths, as this will help ESL to find
the appropriate compiler when required.

Note these installations provide the GCC compilers for both Fortran (gfortran) and C++ (g++).

1.3.2 Windows C++ Compiler

For C++ translation, you have the option of:

1. Microsoft Visual Studio C++ compiler
2. MinGW-W64 C++ compiler

1. The Microsoft Visual Studio C++ compiler is available from an installation of Visual Studio
(2015 or above) - see https://visualstudio.microsoft.com/. The freely available Visual Studio
Community editions are perfectly adequate to use with ESL.

This is the compiler that will be used by default.

When you run the installer, you should ensure it includes "Desktop development with C++"
with "Windows 10 SDK" (or above) option included. If you plan to use the eslgen command to
create COM DLLs or .NET Framework assemblies of simulations, you should ensure "C++
ATL" and "C++/CLR support" is included.

We recommend you install on the default destination folder path, as this will help ESL to find
the appropriate compiler when required.

The installation should provide a Start menu for "Visual Studio" with short-cuts, like "x64/x86
Native Tools Command Prompt", to open a command prompt console window with the
compiler commands available.

2. The MinGW-W64 C++ compiler is available in the MinGW-W64 (GCC for Windows 64 & 32
bits) software package. See 1.3.1 above for details on installing this software.

To use this compiler, you need to use the esl command -gcc option or set the ESLCCOMP
environment variable to GCC.

https://www.mingw-w64.org/downloads/
https://visualstudio.microsoft.com/

Chapter 1 Introduction

ESL Simulation Software - Development Guide 1-4

1.4 Document Conventions
Certain typographical conventions are used to emphasise special text in the documentation.

ESL code, computer output, user commands and responses are shown in a different style, for
example:

sample of font used for ESL code.

A bold font if often used to denote ESL keywords and program variables, for example
MODEL.

1.5 User Liability
A properly conducted simulation study can make a valuable contribution to decision making
processes. On the other hand, an improperly conducted study can give misleading
information which may lead to an inappropriate decision and extremely expensive
consequences.

It is the user's responsibility to conduct a simulation study in a proper manner, and to perform
tests that confirm simulation results are acceptable in the context on any particular decision.

Simulation software tools such as ESL, or in fact any tool, even a garden spade, can be used
correctly to produce desired results, or used incorrectly with disastrous results.

A simulation study comprises the following phases:

• Derivation of mathematical model of dynamic system.

• Conversion and verification of mathematical model as ESL program.

• Simulation execution.

• Validation and analysis of simulation results.

Errors can be introduced during any of the above phases. The mathematical model must
adequately represent the system in order to be able to satisfy the objects of the study. The
ESL program should correspond to the mathematical model exactly, and the simulation
execution must not introduce unacceptably large errors. You will appreciate, perhaps, how
errors may be introduced during the first two phases of a simulation. The origin of errors
introduced during simulation execution is less clear and needs some explanation.

The heart of a simulation is the numerical integration process. The very nature of numerical
integration is such that it produces results which are defined as an "approximate" solution to
differential equations. It is the user's responsibility to ensure that results are within acceptable
limits. This means that the integration should always be operating within its stability bounds,
and the truncation, round-off and global errors should always be within acceptable limits.
Basically, this means the selection of an appropriate integration algorithm, and step-length
control parameters. Variable-step integration attempts to achieve these requirements but is
not fool proof - there will always be problems that confound it. At best such methods give a
good first approximation to the correct step-length, and it is the user's responsibility to confirm
that this approximation is acceptable. For example, a useful process with fixed-step explicit
integration is to repeat a simulation with a step-length half that of the first simulation attempt.
Only if the results are sufficiently close should the original step-length be regarded as
acceptable.

Even when the integration is working properly some dynamic systems can cause erratic
simulation behaviour because the real system is itself highly unstable, and the simulation
represents this instability. In these cases, the slightest integration error, or in fact any small
perturbation, can be magnified and lead to a gross error. Consider a circus acrobat balancing
on a ball on a tightrope. This is highly unstable as the smallest error by the acrobat could
cause a fall. The simulation of such a system could introduce a small simulation error which
would have the same effect as an error by the acrobat that is a fall. In this case it is the
simulation that introduced the error and was the cause of the fall.

Chapter 1 Introduction

ESL Simulation Software - Development Guide 1-5

Two words "verification" and "validation" are used to describe processes in a proper
simulation study which help to ensure the integrity of the results.

• The "verification" process is used to ensure that the simulation results sufficiently
accurately represent the behaviour of the mathematical model (not the dynamic
system).

• The "validation" process is used to ensure that the simulation results sufficiently
accurately represent the behaviour of the real dynamic system.

Verification of a simulation study has the restricted objective of ensuring the integrity of the
solution of the mathematical model. This includes confirmation that results obtained from
mathematical analysis of the model can be produced by simulation; that the numerical
integration is giving stable answers within acceptable error bounds; and tests to confirm the
behaviour of the simulation actually reflects that expected from the mathematical model.

Validation of a simulation study has the overall objective of ensuring that the simulation
results sufficiently accurately represent the behaviour of the dynamic system. This is achieved
by comparing simulated results with known, or predicted, performance of the dynamic system,
and where possible, comparing real system data to the simulated results. This process must
confirm the mathematical model adequately represents the system, and perform the
processes described as verification.

Even following the above processes problems can occur. For example, the simulated system
may encounter a situation which has not been the subject of a specific validation test,
possibly because little or no information is available about this particular situation. In such
cases great care must be exercised in the interpretation of any results.

In this section we have emphasised the problems which may be encountered, and the
rigorous procedures which must be followed if decisions are to be made based on results of
simulation. In conclusion, it should be noted that ESL probably provides a better environment
than any comparable software for helping the user to perform a validated simulation study.

Chapter 2 ESL-Studio

ESL Simulation Software - Development Guide 2-6

CHAPTER 2

2 ESL-Studio
This chapter presents a brief overview of ESL-Studio. Being an interactive graphical program,
most of the functions are intended to be intuitive and the best way of understanding ESL-
Studio is by using it. We suggest working through the User Guide and Tutorial for a basic
introduction. Detailed descriptions of ESL-Studio’s features and how to use them will be found
in the ESL-Studio Help Pages.

2.1 The Main ESL-Studio Window
The figure shows the appearance of ESL-Studio with an example taken from the User Guide
and Tutorial loaded with various windows open.

The central main view area is where block diagrams are created and ESL textual elements
are displayed in tabbed views. Simulation parameters and simulation setup preferences can
also be viewed in this area.

The following dockable panes are initially displayed:

• Toolbar – provides short cuts to most common menu selections.

• Application – displays the structure of the current application.

• Elements – lists the available simulation elements in a tree structure.

• Properties – displays the properties of a selected simulation element. If no element is
selected, the top-level properties of the module are displayed. If the Help box is checked,
the bottom section of the properties pane displays brief explanations and help for
selected properties.

• Messages – where build information and error diagnostics are displayed.

Visibility of the above panes may be changed from the View menu.

https://isimsimulation.com/documents/esl8.2.5/ESL%208.2.5%20User%20Guide.pdf

Chapter 2 ESL-Studio

ESL Simulation Software - Development Guide 2-7

The open windows in the above example are:

• ESL-SEC (Simulation Execution Control) from which program execution is managed,
Simulation Parameters are set, program Variables are accessed, Runtime Displays
are specified and further Advanced Simulation Options are specified.

• An example of graphical output generated from a Display Icon on the diagram.

• An example of tabulated output, also generated from a Display Icon.

2.2 Menus

2.2.1 File

• New, Open, Save, Save As - the usual File menu operations.

• Import from ISE - import an older Integrated Simulation Environment (ISE)
application (Windows only). The application will then be saved in ESL-Studio format.

• Print/Save Diagram, Page Setup, Print Preview, Print View – diagram print and
save operations.

2.2.2 Edit

• Undo, Redo, Cut, Copy Paste, Delete, Select All Flip Rotate – diagram editing
operations.

2.2.3 View

• View Toolbar, View Application, View Elements, View Messages, View
Properties – control visibility of dockable panes.

• View Simulation Elements, View Simulation Setup – open new tabbed views in
the main view area. Simulation Parameters determine how the simulation is run,
Simulation Setup determine how the simulation is built.

• Clear Messages – clears the Messages pane.

• Zoom, Zoom Reset, Zoom All, Zoom Selected – diagram zoom options.

2.2.4 Insert

• Submodel Diagram – opens a new view in the main view area for the creation of a
graphical submodel.

• Textual Submodel – opens a new view in the main view area for the creation of a
textual submodel. The submodel can be typed in or linked from a file.

• Package – opens a new view in the main view area for the creation of an ESL
Package structure.

2.2.5 Simulate

• Run Simulation – initiates running the simulation – opens ESL-SEC (Simulation
Execution Control) with the current application loaded ready to run.

• View Simulation Setup – determine how the simulation is built (as in View menu).

• Simulation Execution – opens ESL-SEC (Simulation Execution Control) to build
and/or run an external ESL simulation.

• Post Run Analysis – opens ESL-Displays to analyse recorded ESL display files
(.dsp or .tab files).

Chapter 2 ESL-Studio

ESL Simulation Software - Development Guide 2-8

2.2.6 Help

• ESL-Studio Help – links to on-line ESL-Studio Help Pages.

• ESL Help – opens locally installed ESL Help facility.

• ESL Documents – links to on-line documentation – User Guide and Tutorial,
Development Guide (this manual), Reference Manual.

• Check ESL-Studio Updates, Check ESL Updates – checks for software updates.

• About – version number and license.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-9

CHAPTER 3

3 ESL Basic Use
This section presents an introduction to using ESL and should enable a first-time user to
understand the basic principles of the ESL simulation language. It first defines the ESL
component programs, then describes the commands used to control the programs and
defines the files used by ESL. The command use is then illustrated by means of a simple
example, and the remainder of the section dissects a basic ESL program to form an
introduction to the details of the ESL language.

Contents:

• ESL Suite of Programs

• ESL Commands

• An ESL Program - Line-by-Line

3.1 ESL Suite of Programs

The figure shows the component programs that form the ESL suite of programs. ESL-Studio
is the graphical user interface to the whole of the ESL software suite. Its main function is the
provision of a graphical editor for the creation of block diagram representations of the system
to be simulated. It also manages all stages of an ESL program development and execution.

External
Text Editor

ESL Program

Compiler

h-code

Translator

Interpreter

Executable

ESL-Studio ESL

Graphical
Editor

Simulation
Execution

Control

Display
Management

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-10

Error free ESL text files, for example, file.esl, are generated from the block diagram
representations. ESL-Studio provides access to a text editor so that all or parts of the system
may be described directly by ESL language statements. (Note that a system may be
described in part graphically and in part textually). ESL-Studio provides a transparent means
of compiling, and executing the ESL programs, whether generated from block diagrams or
written directly in text form. Alternatively, ESL programs can be written outside of the ESL-
Studio environment, using any appropriate text editor, and compiled and executed through
the direct use of ESL commands. ESL programs created external to ESL-Studio can still be
run from ESL-Studio and similarly, ESL programs generated from ESL-Studio can be
executed directly using the ESL commands.

Whichever method is used, the resulting ESL source code (for example, file.esl) is processed
by the ESL compiler. The compiler imposes rigorous integrity checks on the ESL program and
generates a single file containing the results of the compilation. The output file (for example,
file.hcd) contains the program symbol table and h-code. The h-code program comprises low-
level instructions for a hypothetical computer and is functionally equivalent to the original ESL
program.

Execution may be either by interpretation or by translation. The Interpreter provides
immediate execution of the simulation by interpreting the h-code instructions which form the
simulation program. In many cases it provides sufficient execution speed. The Translator
approach, on the other hand, takes a little longer to reach the simulation phase, as a
FORTRAN/C++ compiler and linker are required to produce an executable program.
However, the generated program will run some 4 to 10 times faster than the Interpreter
version and provides the "production" environment for fast simulation execution. A further
advantage of the translator route is that externally compiled code and libraries may be linked
with the ESL program.

The graphical and numerical display of results can be dynamically specified and managed at
run-time when an ESL program is executed through ESL-Studio. Alternatively, ESL
statements (PLOT, PREPARE, TABULATE and PRINT) may be included in a program to
specify output. If a PREPARE statement has been included in the program, (or the equivalent
specified from ESL-Studio), extensive post-run graphical analysis of results can be achieved
using ESL-Studio. The prepare file can also be plotted or converted to another format using
ESL-Displays.

Simulation Execution Control, which is shown in the figure as part of ESL-Studio, can be used
as a stand-alone program to manage all phases of ESL program development from
compilation to graphical and textual output specification.

3.2 ESL Commands
• Basic Commands

• Command parameters

• Files produced by ESL

• File access

• Using ESL commands

• Compiler and Interpreter

• Compiler and Translator

• User interaction

• Post Run graphical analysis

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-11

3.2.1 Basic Commands

The esl command is the basic command for building and running all ESL simulations.

The general syntax of the esl command is:

• esl - displays help for esl command

esl [build_option] [extra_options] filename ... [list_option] [run_options]

build_options for ESL-Pro:

• [none] - compile and interpret esl program (.esl to .hcd)
esl file_no_ext [list_option] [run_options]

• -c - compile esl program (.esl to .hcd)
esl -c file_no_ext [list_option]

• -i - interpret (.hcd)
esl -i file_no_ext [run_options]

• -tf - translate to FORTRAN (.hcd to .f) [alt -t]
esl -tf file_no_ext

• -tcc - translate to C++ (.hcd to .cpp)
esl -tcc file_no_ext

• -f - FORTRAN compile (.f to .obj)
esl -f file_no_ext {file_no_ext}

• -cc - C++ compile (.cpp (or .c) to .obj)
esl -cc file_no_ext {file_no_ext}

• -fl - link with FORTRAN runtime library (.obj to .exe) [alt -l]
esl -fl file_no_ext {file_no_ext} {lib_file}

• -ccl - link with C++ runtime library (.obj to .exe)
esl -ccl file_no_ext {file_no_ext} {lib_file}

• -x - execute translated FORTRAN or C++ (.exe)
esl -x file_no_ext [run_options]

• -cfx - compile, FORTRAN translate, FORTRAN compile, link and execute
(.esl to .exe via .f)
esl -cfx file_no_ext [list_option] {file_no_ext} {lib_file} [run_options]

• -cccx - compile, C++ translate, C++ compile, link and execute
(.esl to .exe via .cpp) [alt -cx]
esl -cccx file_no_ext [list_option] {file_no_ext} {lib_file} [run_options]

• -cfl - compile, FORTRAN translate, FORTRAN compile, link
(.esl to .exe via .f) [alt -cl]
esl -cfl file_no_ext [list_option] {file_no_ext} {lib_file}

• -cccl - compile, C++ translate, C++ compile, link
(.esl to .exe via .cpp)
esl -cccl file_no_ext [list_option] {file_no_ext} {lib_file}

• -tfl - translate, FORTRAN compile, and link (.hcd to .exe via .f)
esl -tfl file_no_ext {file_no_ext} {lib_file}

• -tccl - translate, C++ compile, and link (.hcd to .exe via .cpp)
esl -tccl file_no_ext {file_no_ext} {lib_file}

extra_options = [-32bit] [-gcc] [-single] [-crd] - for builds compilations/links

• -32bit - set compilation/link to 32bit
(same as "set ESL32BIT=TRUE")

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-12

• -gcc - set C/C++ compilation to use (MinGW-w64) GCC
(same as "set ESLCCOMP=GCC")

• -single - set C/C++ compilation to use single precision
(same as "set ESLPRECISION=SINGLE")

• -crd - set Visual Studio C/C++ link with the MS RT DLLs (compiler option /MD)
(same as "set ESLCRD=TRUE")

list_option = [-lst | -tty | -diag]

run_options = [-s snap_file | -sc snap_file [-tfin=number]] [-drv [file]]

*to pre-set an environment use "set ESLSETENVCMD=<some command file [+options]>"

 e.g. set ESLSETENVCMD=
"C:\Program Files\Microsoft SDKs\Windows\v7.0\Bin\SetEnv.cmd" /x64 /release

Also:

• esl -v - give version (ESL Compiler)

• esl -u - check for ESL updates

The following describes each command option in more detail. Note that different computer
operating systems may use different file extensions for FORTRAN, object, and executable
files. That is:

 MS Windows Linux

FORTRAN files .f .f

C++ files .cpp .cpp

Object files .obj .o

Executable files .exe No-extension

The MS Windows convention is used throughout this document.

Note that file names must be presented without extensions, and on case-sensitive systems
they should be presented in lower-case. Single options are shown in square brackets, "[]"
and repeated options in braces, "{ }". Vertical lines, "|", indicate alternative options.

Operation ESL command line

Compile and run the file file.esl
using the Interpreter - produces h-
code file file.hcd

esl file [list_option] [run_options]

Compile the file file.esl - produce h-
code file file.hcd

esl -c file [list_option]

Run the h-code file.hcd using the
Interpreter

esl -i file [run_options]

Translate the file file.hcd into
FORTRAN file.f

esl -tf file

Translate the file file.hcd into C++
file.cpp

esl -tcc file

FORTRAN compile the file file.f
into file.obj, and if present compile
file(s) file2.f to give file2.obj etc

esl -f file { file2 }

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-13

C++/C compile the file file.cpp or
file.c into file.obj, and if present
compiles file(s) file2.cpp or file2.c
into file2.obj etc

esl -cc file { file2 }

Link the object file file.obj with the
FORTRAN linker & runtime library,
and if present file(s) file2.obj -
produces the single executable file
file.exe

esl -fl file { file2 }

Link the object file file.obj with the
C++ linker & runtime library, and if
present file(s) file2.obj - produces
the single executable file file.exe

esl -ccl file { file2 }

Execute the file file.exe that is, run
the program generated through the
translator route

esl -x file [run_options]

Compile - Translate - FORTRAN
Compile - Link - Execute the file
file.esl - produces file.hcd and
executable file file.exe only

esl -cfx file [list_option] [run_options]

Compile - Translate - C++ Compile
- Link - Execute the file file.esl -
produces file.hcd and executable
file file.exe only

esl -cccx file [list_option] [run_options]

Compile - Translate - FORTRAN
Compile - Link the file file.esl -
produces file.hcd and executable
file file.exe only

esl -cfl file [list_option]

Compile - Translate - C++ Compile
- Link the file file.esl - produces
file.hcd and executable file file.exe
only

esl -cccl file [list_option]

Translate - FORTRAN Compile -
Link the file file.hcd - produces
executable file.exe only

esl -tfl file

Translate - C++ Compile - Link the
file file.hcd - produces executable
file.exe only

esl -tccl file

The "list_option" and "run options"
are

list_option = -lst | -tty | -diag

run_options = [-s snap_file | -sc snap_file

[tfin=no]] [-drv [file]]

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-14

3.2.2 Command parameters

Command parameters may appear in any order and follow the file parameter in the esl
command.

Compiler parameters

Optional parameters may be specified for the compiler, that is:

-lst causes a listing file.lst to be produced which includes the source text with
line numbers with any warnings or errors included at the appropriate
position;

-tty causes a listing as above to be output to the terminal;

-diag causes a diagnostic listing file.lst of symbolic h-code and the symbol
table.

Note that only one of the above options may be specified.

Where listing output is specified a file with the extension ".lst" will be created. To produce a
listing file for the ESL source "file.esl", any of the following commands may be used:

esl file -lst

esl -c file -lst

esl -cfx file -lst

esl -cccx file -lst

esl -cfl file -lst

esl -cccl file -lst

Execution parameters

Execution parameters allow the simulation to start or continue from the state defined in a
snapshot file, and/or allow parameters to be externally specified and to be changed in the
course of a simulation run from information given in a driver file:

-sc snapfile continues simulation from state defined in the snapshot file

-s snapfile continues simulation from state defined in the snapshot file, but with
time (T) reset to its starting value (TSTART typically 0.0)

-drv driverfile externally controls simulation by a driver file which specifies new
values for parameters prior to simulation start, and allows parameter
changes within a simulation run. Omitting the driver file name
causes the Interact service to be invoked at the start of the
simulation

Note that both the -sc and -s parameters cause the Interact service to be invoked, requiring a
"Continue" command to be entered to start the simulation. The interaction may be avoided by
appending the -tfin=no parameter, which specifies a new value for the simulation termination
time, Tfin.

For example:

esl -x file -s snapfile

esl -i file -sc snapfile -tfin=300

esl -x file -drv driverfile

esl -x file -drv

The first example uses an executable (produced via FORTRAN or C++ translation) and starts
the simulation from the state defined in the snapshot file, but with time starting from its initial
value. The second example uses interpreter execution to continue the simulation from the
state defined in the snapshot file but with no interaction and Tfin set to 300. The third example
uses an executable with a simulation driver file and the final example invokes the Interaction

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-15

service. Note that the snapshot parameters, driver parameters, and other parameters, may be
specified in a combination command, for example:

esl -cccx file -lst -s snapfile -drv driverfile

A full description of the snapshot and the simulation driver file facility is given in ESL Run
Control.

3.2.3 Files produced by ESL

Filename extensions are used to identify different file types used by ESL. In the following
"filename" is interpreted as the base filename (no extension) of an ESL source code program,
"usename" as a base filename specified by the user during ESL execution. Where two
alternatives are given the first illustrates the MS Windows convention:

filename.esl ESL source program files in text format

filename.hcd h-code output of the ESL Compiler, containing the Symbol Table
as well as the h-code. It is used by the Interpreter to execute a
simulation, and by the Translator to generate equivalent
FORTRAN/C++ code

filename.lst listing text files are generated by the compiler and takes one of two
forms: source code listing with line numbers and compiler
messages included; symbolic h-code listing, and symbol table,
used mainly by ISIM International Simulation Limited for diagnostic
purposes

filename.f FORTRAN source code text file produced by the ESL Translator
when invoked by the esl -tf command

filename.cpp C++ source code text file produced by the ESL Translator when
invoked by the esl -tcc command

filename.obj object code file produced by the FORTRAN/C++ compiler when
invoked by the esl -f/-cc command

filename.exe executable code file produced by linking object and library files and
invoked by esl -fl/-ccl/-cfx/-cccx/-cfl/-cccl/-tfl/-tccl command

usename.sec simulation specification file for ESL-SEC – saves complete
specification of simulation including simulation parameter values
and display settings

usename.dsp ESL prepare files which contain graphical data in a form suitable
for display using ESL-Displays

usename.dis display specification file for ESL-Displays – saves current display
specification

usename.tab ESL tabulate text files which contain tabular data listings

usename.snp snapshot files which contain data defining the state of a simulation
at the point the "snapshot" was taken (see ESL Run Control)

filename.rem text file specifying the networked computers and processes which
are used to execute remote segments (see ESL Segments)

usename.drv simulation driver file used to set parameters prior to simulation,
and during a run (see ESL Run Control)

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-16

3.2.4 File access

In ESL filenames must not include spaces. ESL is sensitive to whether filenames are in
upper- or lower-case characters, and on systems that are sensitive to case ESL uses the
following rules to open a user specified filename (for example, filenames in INCLUDE
statements):

1. try to open (using lower case default extension if no extension specified).
2. try to open (using lower case default extension if no extension specified), but with tree

prefix of library directory.
3. try to open "as is" with no default extension.

If none of the above succeeds, the user specified filename is converted to lower case and the
complete sequence attempted again.

For case sensitive systems the ESL INCLUDE statement does not make a distinction
between upper and lower case. An "INCLUDE LIMINT" will open "LIMINT" if it exists,
otherwise it will try to open "limint". On the other hand, the statement "INCLUDE limint" will
only attempt to open the lower case filename.

Note that users are strongly advised to use only lower-case file names for all ESL files with
case-sensitive operating systems.

On case sensitive systems, best practice is:

• Use lower case filenames if possible.

• Avoid filenames whose only difference is case.

3.2.5 Using ESL commands

To explain the operation of the "esl" command let us consider the example rocket.esl (listed
below) which simulates the vertical flight of a rocket used to sample atmospheric dust at high
altitude. The rocket has a mass of 300 Kg, a fuel capacity of 2 000 Kg, produces a constant
thrust of 35 000 N and burns fuel at a rate of 20 Kg/s. The aerodynamic drag force always
opposes motion and is proportional to the square of velocity. The basic equation of vertical
flight is:

ℎ𝑒𝑖𝑔ℎ𝑡′′ =
(𝑡ℎ𝑟𝑢𝑠𝑡 − 𝑑𝑟𝑎𝑔)

𝑚𝑎𝑠𝑠
− 𝐺

where G is 9.81 m/s2, and the drag proportionality is 0.5 Ns2/m2.

The program simulates several flights of the rocket with initial fuel load varying between
1 400 Kg and 2 000 Kg, in order to determine how initial fuel affects the maximum height
achieved.

Note that the "rocket" program example is available in the ESL installation …esl\examples
directory, as are all main examples in this manual. Examples should be copied to your own
working directory before execution.

The program may be run using the ESL compiler and interpreter or compiler and
translator commands.

The first example - rocket.esl

study

 model rocket(real: max_ht := real: FUELo);

-- Output max height, input initial fuel.

 real: height,drag,thrust,velocity,FUEL,Mass;

 constant real: G/9.81/,Mrk/300.0/,burn/20.0/;

 logical: power, done/false/;

initial --Initial conditions.

 height:= 0.0; height':= 0.0; FUEL:= FUELo;

 max_ht:= 0.0;

dynamic

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-17

--Rocket dynamics.

 velocity:= height';

-- Drag is proportional to velocity squared.

 drag:= 0.5 * velocity * abs(velocity);

-- Mass of rocket and its current fuel.

 Mass:= Mrk + FUEL;

-- Do we still have fuel and hence power?

 power:= FUEL > 0.0;

-- Thrust is constant until fuel exhausted.

 thrust:= if power then 35000.0 else 0.0;

-- Flight equation.

 height'':= (thrust - drag)/Mass - G;

-- Fuel Mass equation, fuel burn constant.

 FUEL':= if power then -burn else 0.0;

-- Detect maximum height.

 when height' < 0.0 then

 done:= true;

 max_ht:= height; -- record the max.

 end_when;

step

-- Save results for later analysis by DISP.

 prepare "rocket",t,height,velocity,thrust,

 FUEL,drag,Mass;

 terminate done; --when rocket starts decent.

communication

 Tabulate t,height,velocity;

end rocket;

-- Experiment

 real: FUELo, max_ht;

-- Set integration parameters

 algo:= rk5; cint:= 15.0; tfin:= 120.0;

-- Do simulation for varying initial fuel.

 for FUELo:= 1400.00 .. 2000.0 step 200.0

 loop

-- Call the model to do a simulation run.

rocket(max_ht := FUELo);

print "With fuel ",FUELo:6.1," Kg",

" height achieved was ",max_ht:-10.1," m.";

 end_loop;

end_study

3.2.6 Compiler and Interpreter

To run the compiler and then the Interpreter enter:

esl rocket

This will result in the compiler response:

c:\Temp>esl rocket

**** E S L Compiler v8.3.0.1

**** Copyright (C) ISIM International Simulation Limited 1992-2023.

< ROCKET 0 WARNINGS 0 ERRORS >

< EXP$MN 0 WARNINGS 0 ERRORS >

followed immediately by the interpreter:

**** E S L Interpreter Run-time v8.3.0.1

**** Copyright (C) ISIM International Simulation Limited 1992-2023.

T HEIGHT VELOCITY

 0.0000 0.0000 0.0000

 15.000 1200.2 150.10

 30.000 4001.9 210.28

 45.000 7317.0 229.59

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-18

 60.000 10867.0 243.50

 75.000 13957.0 56.702

With fuel 1400.0 kg height achieved was 14087.5 m.

T HEIGHT VELOCITY

 0.0000 0.0000 0.0000

 15.000 990.85 127.74

 30.000 3497.8 195.04

 45.000 6629.9 219.33

 60.000 10037.0 234.43

 75.000 13656.0 247.86

With fuel 1600.0 kg height achieved was 15647.2 m.

T HEIGHT VELOCITY

 0.0000 0.0000 0.0000

 15.000 810.35 107.01

 30.000 3010.7 177.52

 45.000 5931.2 207.80

 60.000 9182.3 224.81

 75.000 12663.0 239.03

 90.000 16348.0 252.20

With fuel 1800.0 kg height achieved was 17089.8 m.

T HEIGHT VELOCITY

 0.0000 0.0000 0.0000

 15.000 654.44 88.156

 30.000 2546.5 158.12

 45.000 5224.3 194.53

 60.000 8301.9 214.44

 75.000 11636.0 229.72

 90.000 15186.0 243.51

 105.00 18276.0 56.713

With fuel 2000.0 kg height achieved was 18407.0 m.

c:\Temp>

3.2.7 Compiler and Translator

The Translator method of executing an ESL program converts a .hcd file into a FORTRAN or
C++ source code file with extension .f or .cpp. The following shows the separate sequence of
ESL commands to execute a C++ Translated simulation:

Compile the ESL program (not needed if the file rocket.hcd already exists from previous
compilation)

esl -c rocket

Translate the h-code in rocket.hcd to C++ in file rocket.cpp:

esl -tcc rocket

The C++ source file has to be compiled. For this use:

esl -cc rocket

which produces file rocket.obj or rocket.o, and then the linking process:

esl -ccl rocket

links the object code with the necessary library routines to produce an executable C++ file,
rocket.exe or rocket.

Finally, to run the program:

esl -x rocket

Depending on the type and complexity of operations in the ESL program, considerable
reductions in execution time may be obtained by using the translator.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-19

The above operations may be combined in logical sequence:

To compile, translate, C++ compile and link:

esl -cccl rocket

To translate, C++ compile and link:

esl -tccl rocket

To compile, translate, C++ compile, link and execute:

esl -cccx rocket

The equivalent FORTRAN command, to compile, translate, FORTRAN compile, link and
execute is:

esl -cfx rocket

3.2.8 User interaction

A non-graphical ESL program can be built and executed from ESL-Studio using the
Simulate>Simulation Execution… menu option which opens ESL-SEC (Simulation Execution
Control). This allows compile/translate options to be specified or to simply execute a
previously built ESL executable. ESL-SEC can also be run directly from the command prompt
(terminal):

…>esl_sec

The advantage of using ESL-SEC, as opposed to command-line directives is that you have
full interactive control of the program including specifying graphical and tabulate output, just
like running a diagrammatically defined simulation in ESL-Studio.

ESL does include an older command-line on-line run-time support facility which allows the
user to halt the run, examine and if necessary, modify variables or abort the run. This is
known as the "INTERACT" facility and is invoked by the break key combination - Ctrl + Break
on a PC (usually Ctrl + C on other computers). INTERACT statements may be placed in the
program to activate this service. This facility is simple to use, typing "HELP" or gives a
menu of options (see ESL Run Control for further information).

3.2.9 Post Run graphical analysis

Execution of the simulation will have created a prepare file rocket.dsp, defined by the
"prepare" statement in rocket.esl, which contains the values of t (time), height and velocity
etc, throughout the simulation.

This data may be viewed graphically in the ESL-Displays program accessed from the ESL-
Studio Simulate>Post Run Analysis menu option or by running ESL-Displays directly from the
command prompt:

…>esl_displays

The figure shows an ESL-Studio Post Run Plot graph of results obtained from running the
rocket program.

ESL-Displays provides post-run graphical analysis of ESL simulation results. It processes
.dsp files produced by the ESL prepare statement (or .dsp files specified directly from ESL-
Studio). It also provides a means of conversion between prepare, tab, csv and tsv formats.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-20

Post-Run plot of "rocket" results

3.3 An ESL Program - Line-by-Line

• The program

• Lexical components

• Comments

• Include files

• Program structure and modules

• PACKAGE definition

• Reserved PACKAGE

• Run specification

• Integration selection

• Model definition

• Results from the ESL example

3.3.1 The program

This section introduces the ESL language with a second example, Bench3, which is provided
in the ESL example directory. The program illustrates many of the basic ESL features and the
remainder of this section examines, line by the line, the components of the program. The
listing of Bench3 contains line numbers for identification only - these are not part of the
program.

The example is somewhat artificial in order to demonstrate as many features of the ESL
language as possible. It comprises three different solutions of the Van der Pol equation,
(represented by the variables X, Y and Z). that is:

𝑥′′ = 𝑘(1 − 𝑥2)𝑥′ − 𝑥

The Van der Pol equation can be considered to simulate the output of an electronic oscillator.
The variable absX represents the absolute value of X, and models the output of a perfect full-
wave bridge rectifier which is subject to an input waveform X (output of the Van der Pol
oscillator). The variables XMAX and XMIN are designed to save the maximum and minimum
values of the waveform described by X which occur during a simulation run.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-21

The first task of the ESL Compiler is to analyze the syntax of the source program, and this is
done at several levels. A given statement is examined at the lexical level to determine the
lexical components; then the statement structure is analyzed; finally, a check is made to
determine whether a statement may legally appear at that point in the overall structure of the
program. Here, we shall continue this "bottom up" approach to introduce the basic ESL
features - we shall study the lexical components, and then the statement structure. ESL is
explained using a "top down" approach in ESL Operation and Program Structure.

Sample Program - bench3.esl

0001 --Benchmark 3

0002 STUDY

0003 PACKAGE GLOBAL; REAL:ARR(5,2); INTEGER:RUN/0/; END;

0005 PROCEDURE FUN(REAL:CONST,VAR)RETURN REAL;

0006 REAL:SQUARE; SQUARE:=1-VAR**2; RETURN CONST*SQUARE;

0007 END FUN;

0008 --

0009 SUBMODEL INTGL(Real: out:= CONSTANT Real: IC; Real: in);

0010 INITIAL out:=IC; DYNAMIC out':=in;

0011 END INTGL;

0012 --

0013 INCLUDE "integ";

0014 --

0015 MODEL VanderPol(Real: X,Y:=Real: K);

0016 USE GLOBAL;

0017 CONSTANT REAL: XD0/0.0/;

0018 REAL: Z,XMAX,XMIN/0.0/,absX;

0019 INITIAL

0020 X:=0.1; X':=XD0; XMAX:=0;

0021 DYNAMIC

0022 X'':= FUN(K,X)*X'-X;

0023 Y := INTEG(X,X'); --Library submodel (same as INTGL)

0024 Z := INTGL(0.1,X');

0025 absX := if X >= 0.0 then X else -X;

0026 when X' < 0.0 then

0027 if X > XMAX then XMAX:= X; end_if;

0028 when X' >= 0.0 then

0029 if X < XMIN then XMIN:= X; end_if;

0030 print "Minimum ",X :-13.5," detected at T= ",T :-13.5;

0031 end_when;

0032 STEP

0033 PREPARE "bench3",T,X,X',X'',absX,Y,Z;

0034 COMMUNICATION

0035 PLOT "Phase plane plot",X,X',-2.0,2.0,-2.0,2.0;

0036 TERMINAL

0037 RUN:=RUN+1; ARR(RUN,1):=K; ARR(RUN,2):=XMAX;

0038 PRINT "Run no, Xmax, Xmin: ",RUN,XMAX,XMIN;

0039 END VanderPol;

0040 --

0041 --EXPERIMENT

0042 USE GLOBAL;

0043 REAL: X,Y,K/1.0/; INTEGER:I;

0044 READ ALGO,CINT,NSTEP;

0045 TFIN:=10;

0046 WHILE RUN < 5

0047 LOOP

0048 VANDERPOL (X,Y:=K); K:= K+0.5;

0049 INTERACT;

0050 END_LOOP;

0051 PRINT " RUN NO. K XMAX";

0052 FOR I:=1..RUN

0053 LOOP PRINT I, ARR(I,1),ARR(I,2); END_LOOP;

0054 END_STUDY

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-22

3.3.2 Lexical components

A principal characteristic of an ESL program is a lexical style that is similar to that of an Ada
or Pascal program. Semicolons are used to separate statements, and all identifiers are
specified, or declared, before they are used. Several general points about ESL's basic lexical
components need to be made before proceeding to a discussion of the program and
statement structure.

Identifiers

Identifiers may consist of any number of letters and digits but only the first 28 characters are
significant. The first character must be a letter. Identifiers differing only in the use of
corresponding upper and lower-case letters are considered the same. The underscore symbol
"_" may be used within an identifier to improve the appearance.

Primes (') appended to an identifier indicate first or higher-order derivatives of the variable (for
example, x', pos"). The identifier plus appended primes must not be longer than 28
characters. Identifier examples:

VELOCITY X1 x2 Torque x' POS" Velocity_sat_1

Numbers

There are two classes of number - integers (whole numbers) and reals (floating point
numbers). The range of an integer is -231 to (231-1), and the magnitude of a real is in the
approximate range 10-38 to 10+38 for single precision and 10-308 to 10+308 for double precision
(see below). A real number must contain a decimal point, which may never be the first or last
character of a number. It must always be preceded by a digit and followed by either a digit or
an exponent "E" or "D" part. Examples:

12 12.0 12.E0 12E0 1.2E+01 0.12D2

The D and E exponent characters are treated identically - all real numbers are held to single
precision by the ESL interpreter, FORTRAN translated and single precision C++ programs; all
real numbers are held to double precision by default for C++ translated programs.

Both reals and integers may be signed, but must not contain embedded spaces.

Character strings

A literal character string is a sequence of characters enclosed by string bracket characters ("
or %).

"This is a string"

%SO IS THIS%

To use the string bracket character itself within a string, the alternative string bracket
characters should enclose the string, or it should be written twice. Thus the string -A HIGH %-
could be written as:

"-A HIGH %-"

or

%-A HIGH %%-%.

Statements and expressions

ESL contains a variety of statement types, which are described in detail in ESL Operation and
Program Structure. Note that a line of code may contain multiple statements and that
statements are terminated by a semicolon ";". A statement may also be continued over
several lines.
The ESL expression is consistent with that defined in other languages such as FORTRAN,

but the relational operators are represented as:

= equal to

/= not equal to

> greater than

< less than

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-23

<= less than or equal to

>= greater than or equal to

3.3.3 Comments

Comments start with a double hyphen "--" and are terminated by the end-of-line. Lines 1, 8,
12, 14, 40, 41 in Bench3 are all comment lines, and line 23 contains a comment.

Library comments

The LIBRARY comment is a special comment used by ESL-Studio when processing ESL text
submodels, or function procedures. It is used to specify any standard library submodel, other
submodel, procedure, or package, which is used by that module. It causes ESL-Studio to
generate INCLUDE statements to incorporate the required modules.

The general form of the Library comment is:

-- LIBRARY file1, file2, file3

where file1, file2, file3 etc are the sources of the module referred to.

Its use is illustrated in the following example that uses the standard library submodel stepp:

SUBMODEL example(... := ...);

-- LIBRARY stepp

 LOGICAL: log1;

 INITIAL

 DYNAMIC

 log1 := stepp(0.1);

END example;

Note that any LIBRARY comments must be placed immediately after the submodel
declaration statement.

3.3.4 Include files

ESL source code may be "included" from a file and inserted into the program by the use of an
INCLUDE statement. Include statements may appear at any point in a program as the only
statement on a line, with no following comment. They are dealt with at the lexical level. Line
13 of Bench3 contains an include statement which causes the submodel library module
INTEG to be included from the ESL library directory, for example:

INCLUDE "filename1";

INCLUDE "filename2" -l;

The literal character strings (filename1/2) specify the name of the file which is to be included
at that point in the program. ESL will conduct a search for INCLUDE files starting in the local
directory and then the ESL library directory as follows:

If an explicit extension is given, .esl or an alternative, a search will be made first in the current
directory and then in the ESL library directory.

If no extension is given, the following sequence is used:

• Current directory, .esl extension.

• Library directory, .esl extension.

• Current directory, no extension.

The "-l " option causes the include file statements to be listed if a listing is requested when
compilation is started.

Include files may be nested (that is, the included files may in turn contain INCLUDE
statements).

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-24

3.3.5 Program structure and modules

The structure of an ESL program is illustrated by "bench3". The keywords STUDY on line 2
and END_STUDY on line 54, bracket the program modules. We shall see in ESL Operation
and Program Structure that other possibilities exist, but for the moment we shall assume that
all ESL programs begin and end with these keywords. The "bench3" example shows five of
the principal constructs of ESL:

• The MODEL, (line 15 to 39).

• The SUBMODEL, (line 9 to 11).

• The EXPERIMENT, (line 41 to 53).

• The PROCEDURE, (line 5 to 7).

• The PACKAGE, (line 3).

Each of these modules has a particular purpose which will be described in turn below. The
model and submodel is where the dynamic aspects of ESL simulation are defined, and the
other modules support this. The experiment is the default region - if no other modules are
declared between STUDY and END_STUDY, then all statements will be in the experiment
module, or region. Note that experiment is not a keyword, and the comment on line 41 is for
clarity only. When ESL is run, the experiment region is executed first and this almost always
involves calling the model, the module immediately above. One rule in ESL is that all modules
must be declared before they are used, so it can be seen that the most widely used
structures, such as PACKAGE which involves common data, are declared first, whereas the
model is only used by the experiment and can therefore be the last non-experiment module to
be presented.

The experiment controls the running of the model, or models, in the study. Setting parameters
which control the simulation, such as integration algorithm, step-length, communication
interval, final-time and error tolerances, is often done here. Alternatively the model INITIAL
region may be used to set these parameters. The complete language provides a variety of
procedural code statements, including loop and conditional statements to allow easy
programming of sequences of runs.

In common with all ESL program modules, data variables must be declared before they are
used. The USE GLOBAL statement in line 42, that is:

0042 USE GLOBAL;

specifies that the data variables defined in the PACKAGE GLOBAL are available to the
experiment. Local variables X, Y, and K are declared as type REAL, and I as type INTEGER,
in line 43, that is:

0043 REAL: X,Y,K/1.0/; INTEGER:I;

The real variable K is declared to have an initial value of 1.0 which is set once prior to
program execution. Variables may be defined as type REAL, INTEGER, LOGICAL,
CHARACTER or FILE (see ESL Operation and Program Structure). Declared variables must
be different from the ESL reserved words.

The experiment and the modelling subprograms (model, submodel, or segment) are all
assumed to have an implicit USE RESERVED statement which gives the program module
access to ESL's reserved variables. This is the only example in ESL where variables do not
have to be explicitly declared. The reserved variables include simulation time (T), start time
(TSTART), finish time (TFIN), communication interval (CINT), integration algorithm (ALGO)
and minimum number of integration steps in a communication interval (NSTEP).

In the example, the READ statement in line 44, that is:

0044 READ ALGO,CINT,NSTEP;

causes the user to be prompted to input values for ALGO, CINT and NSTEP. Suitable values
are ALGO=1 (to select the default variable-step fifth-order integration algorithm), CINT=0.1
(communication points or primary output every 0.1 second), and NSTEP=1 (maximum
integration step-length of CINT). In response to the prompt for ALGO the user may enter an
integer value followed by return, and then the user is prompted for the remaining input (CINT

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-25

and NSTEP). Alternatively the user may enter all three values separated by spaces, or
commas, in response to the "ALGO," prompt, for example:

ALGO,CINT,NSTEP:1,0.1,1

The assignment statement in line 45 uses the ":=" assignment operator to indicate that the
reserved variable TFIN is set equal to 10, that is:

0045 TFIN:=10;

A WHILE-loop occupies lines 46 to 50:

0046 WHILE RUN < 5

0047 LOOP

0048 VANDERPOL (X,Y:=K); K:= K+0.5;

0049 INTERACT;

0050 END_LOOP;

and this causes the body of the loop to be repeated while the variable RUN, declared in
PACKAGE GLOBAL, is less than 5. As RUN is initialised with zero, and incremented at the
end of each simulation run (model line 37), the body of the loop will be executed 5 times.

The body of the loop includes an invocation, or call, to the model VANDERPOL, in line 48,
which causes a single simulation run of the model. The arguments X and Y are model
outputs, which must be separated from the model input argument K by the assignment
operator ":=". Note that K is increased after each simulation run.

The model invocation is followed by an INTERACT statement which invokes the on-line
interact support service. This provides an aid to program development and testing, and
affords a simple mechanism for the user to control simulation experiments. A number of
commands are available to: examine or set data variables; determine the state of the
program; or to control subsequent execution, for example, continue the simulation, restart the
simulation from the beginning or simply "quit". It is designed to provide the user with all the
information necessary to perform the above tasks. By typing HELP and then pressing Return
or Enter key, a list of commands and explanations are given. A full description of is given in
ESL Run Control.

Following the simulation loop, lines 51 to 53 contain a PRINT statement to output a title, and
then a simple FOR-loop to output K and corresponding maximum value of X for each
simulation run, that is:

0051 PRINT " RUN NO. K XMAX";

0052 FOR I:=1..RUN

0053 LOOP PRINT I, ARR(I,1),ARR(I,2); END_LOOP;

The appropriate values for output have been saved in the array ARR during the course of the
simulation runs. The END_STUDY statement in line 54 causes the program to stop.

3.3.6 PACKAGE definition

Line 3 defines the PACKAGE with the name GLOBAL, and specifies package variables ARR,
a real array, and RUN, an integer variable, that is:

0003 PACKAGE GLOBAL; REAL:ARR(5,2); INTEGER:RUN/0/; END;

This means of specifying variables is similar to FORTRAN common, but in ESL program
modules package data is accessed by the USE statement (for example, lines 16 and 42)
rather than by the user repeating a declaration. Unlike FORTRAN common a package may be
used to give initial values to variables (for example, RUN is initialised with the value zero).

3.3.7 Reserved PACKAGE

The Simulation Parameters, that define the basic properties of the simulation to be run, are
declared in the predefined package RESERVED. An implicit USE RESERVED is assumed in
the experiment and all modelling subprograms (model, submodel, and segments - explained
in ESL Operation and Program Structure). These variables are used to control the simulation
process, and are given default initial values as shown below. The package RESERVED can

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-26

be accessed from within procedural subprogram declarations by the statement USE
RESERVED.

PACKAGE RESERVED;

-- User reserved variables, default values given

-- in declarations.

-- T - time;

-- TSTART - initial value of T at start of run;

-- TFIN - final value of T at end-of-run;

-- CINT - communication interval;

-- DISERR - discontinuity detection error tolerance;

-- INTERR - integration error tolerance;

-- ALGO - integration algorithm (1 .. 8, 21, 22);

-- NSTEP - number of integration steps in CINT;

-- DIS_ST - simulation status variable for use in STEP

-- region to control output

-- = 0 ordinary end-of-step

-- = 1 communication point

-- = 2 immediately before discontinuity

-- = 3 immediately after discontinuity

-- ALGO - mnemonic constants.

-- RK5 - fifth-order variable-step integration;

-- RK4 - fourth-order Runge-Kutta integration;

-- RK2 - second-order Runge-kutta integration;

-- STIFF2 - second-order stiff integration;

-- GEAR1 - Gear's variable-step stiff integration;

-- GEAR2 - Gear's method with diagonal Jacobean;

-- ADAMS - Adams predictor-corrector integration;

-- RK1 - Euler first order integration;

-- LIN1 - Newton-Raphson Linearization routine ;

-- LIN2 - Simplex Linearization routine.

--

 REAL: T,TSTART/0.0/,TFIN/10.0/,CINT/1.0/,

 DISERR/0.0001/,INTERR/0.001/; INTEGER: ALGO/1/,NSTEP/1/;

--

 CONSTANT INTEGER: RK5/1/,RK4/2/,RK2/3/,STIFF2/4/,

 GEAR1/5/,GEAR2/6/,ADAMS/7/,RK1/8/,

 LIN1/21/,LIN2/22/;

-- Status variable treated as constant from users point of view

 INTEGER: DIS_ST;

END RESERVED;

Additional system variables, used for internal ESL control purpose, are also included in the
reserved package but are not shown here.

The variables named in the above list are initialised at the start of the program.

3.3.8 Run specification

A simulation run starts with time (T) being set to TSTART, and the simulation proceeds with
time being changed in steps of CINT/NSTEP for fixed-step integration, and steps less than or
equal to CINT/NSTEP for variable-step integration. At the start of the simulation run, and
whenever the simulation has progressed by one integration step (say CINT/NSTEP), the code
in the STEP region is executed. In a similar manner the code in the COMMUNICATION
region is also executed at the start of the simulation (immediately after the first execution of
step code), and then whenever the simulation has progressed by an interval of time equal to
CINT. In general the code in the step region is executed more frequently than the code in the
communication region. Higher fidelity, more frequent output results from output statements
placed in the step region. On the other hand, output from the communication region is always
at regular intervals determined by the user setting CINT.

A simulation with the independent variable decreasing (integration with time decreasing as
the simulation progresses) occurs when TFIN is less than TSTART, and the communication
interval, CINT, is negative.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-27

Run Termination - TERMINATE

A run terminates in the following three circumstances:

(1) After the communication interval (end of communication region) in which time, T, has
become equal to, or greater than, TFIN. This check also applies if the simulation is in reverse,
and time is decreasing as the simulation proceeds.

(2) Following successful execution of a TERMINATE statement placed in the step or
communication region. The simulation run is terminated following the execution of the step or
communication region in which the terminate condition is satisfied. For the statement:

TERMINATE T >= 16.33333;

the value of T at termination will be that corresponding to the step or communication point,
that is, normally T will be greater than the specified terminate value.

(3) Following successful execution of TERMINATE statement placed in the body of "when"
statement, for example:

when T >= 16.33333 then terminate TRUE; end_when;

will cause terminate to occur more precisely. A step region is executed at T "very close" to the
expected value prior to run termination.

Understanding CINT, ALGO, TSTART and TFIN

CINT may be changed during a simulation run, and the next communication interval will use
the new value of CINT. Note the current communication interval is first completed with the
previous CINT, and the next communication interval uses the new value. Changes to NSTEP
also take effect in the same manner.

The value of TSTART which is current after the final statement of a model (or segment)
INITIAL region, is taken as the start time for the simulation run. Any subsequent changes, for
example, in a submodel INITIAL region, or any other code section, do not influence the start
time for the current run. Similarly the value of ALGO (integration method) which is current
when the first integration step is started is used for the current run. Changes made to ALGO
during a run do not influence the current run.

Note that in INITIAL regions TSTART should be used instead of T to indicate a value for time.
At the start of the model/segment INITIAL region T is set to the existing value of TSTART,
and at the end of INITIAL region T is again set to TSTART (this allows users to set TSTART
in the INITIAL region). Users may freely change TFIN during the course of a run.

A simulation may proceed in a reverse sense, that is, with time decreasing. To program a
reverse time run, set CINT negative and ensure TFIN is less than TSTART. Programs that
depend on time related events (for example, the ESL modulator library submodel - modult),
cannot be simulated with time decreasing.

During the implicit INTERACT service mode, at the point where INTERACT is automatically
invoked at end-of-run (at TFIN), the run may be extended either with time increasing or
decreasing. In this case simply ensure CINT is set to indicate the direction of simulation, and
issue "Continue xxx", where xxx is the new TFIN required. Note a simple "Continue" at this
point will cause the simulation run to be terminated, even though TFIN may just have been
interactively changed.

3.3.9 Integration selection

The integration algorithm to be used in a simulation run is determined by setting the reserved
variable ALGO. This variable may be set to an integer value, or a predefined symbolic name.
The following table gives the different integer values allowed for ALGO and the corresponding
symbolic name:

1 or RK5 - fifth-order variable-step integration;

2 or RK4 - fourth-order Runge-Kutta integration;

3 or RK2 - second-order Runge-Kutta integration;

4 or STIFF2 - second-order stiff integration;

5 or GEAR1 - Gear's variable-step stiff integration;

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-28

6 or GEAR2 - Gear's method with diagonal Jacobean;

7 or ADAMS - Adams predictor-corrector integration;

8 or RK1 - Euler first-order integration.

Note that the following statements are equivalent:

ALGO:= 5;

ALGO:= GEAR1;

The reader is referred to a detailed description of integration given in Modelling Code. Two
other mnemonics are also permitted for ALGO, these are LIN1 and LIN2 which specify the
method for determining steady-state conditions when the model ANALYSIS region is used
(see Steady-State Analysis).

3.3.10 Model definition

The model provides the user with the means to describe the physical system, and may
contain information relating to how a single simulation run is to be performed. It is the model
through its dynamic region code, and invocations of submodels and segments, that defines
the complete physical system to be simulated.

A model definition starts with a model declaration statement which specifies the name, output
and input arguments of the model. Declarations follow and finally the model definition ends
with the model body, which must contain at least a DYNAMIC region, and may also include
INITIAL, TERMINAL and ANALYSIS regions. The DYNAMIC region may call previously
defined submodels, and may optionally have associated COMMUNICATION and STEP
regions.

Model statement

The model declaration in line 15, that is:

0015 MODEL VanderPol(Real: X,Y:=Real: K);

specifies the name of the model is VANDERPOL, and it has two REAL output arguments, X
and Y and one REAL input argument, K. This means that the experiment (see line 48), sets
the value of K to be used by the MODEL, which returns values of X and Y to the experiment.

Declarations

Lines 16 to 18 declare variables local to the MODEL, and in some cases initialise them, that
is:

0016 USE GLOBAL;

0017 CONSTANT REAL: XD0/0.0/;

0018 REAL: Z,XMAX,XMIN/0.0/,absX;

All variables and constants used in the MODEL must be declared. Note that the input and
output variables (arguments) are declared in the MODEL declaration; the reserved variable T
is declared in the predefined PACKAGE RESERVED and made accessible by an implicit USE
RESERVED statement; and the data variables declared in the PACKAGE GLOBAL are made
accessible by the explicit USE GLOBAL statement in line 16.

Consider the statement in line 17. This simply declares a constant REAL identifier, XD0, and
sets its value to real zero. Constants must be given a value when declared, and may be
defined as type REAL, INTEGER, LOGICAL, or CHARACTER.

The statement in line 18 declares four real variables (Z, XMAX, XMIN, and absX), but only
XMIN is specified as having an initial value, (real zero). It is important to appreciate that this
initialisation occurs "every time" the model is invoked, that is, at the start of each simulation
run. Whereas initialisation in procedural modules, including the experiment, occurs at the start
of program execution, and is a once only operation.

Model body

The output from the model is the value of X and Y at the end of the simulation, and they are
specified as output arguments in the model specification statement in line 15. The outputs are
two of the solutions of the equation, and they should be equal. The equation to be solved has

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-29

a parameter K, which is set in the experiment, hence its appearance as an input argument in
the model definition statement.

The following examines the DYNAMIC region, and its associated STEP and
COMMUNICATION regions, before considering the optional INITIAL and TERMINAL regions.

Dynamic region

The DYNAMIC region specifies the dynamic system to be simulated, and is unlike any other
section of an ESL program. It has the task of specifying the parallel processes which occur in
a real-life system. In a real system an amplifier which drives the field current of an electric
motor is "amplifying" at the same time as the motor is "revolving". The two dynamic
operations are happening at the same time, or in parallel. Normal scientific program, or
procedural, code which is obeyed strictly in sequence, one statement after another, is not
appropriate to describe these parallel operations.

ESL uses special model (non-procedural) code to represent a dynamic system. Each
statement represents a separate physical parallel element of the real system, for example:

P:= A + 0.1 * B;

represents an element with output P, which is computed from the inputs A, 0.1 and B
according to the expression, and statement:

A,B:= subsys(P);

represents an element with outputs A and B which are computed from input P. In this case
subsys is a submodel which may represent a complex sub-system. Note that the output, P, of
the first statement is used as an input in the second, and the outputs of the second statement,
A and B, are used as inputs in the first statement. These two statements represent physical
elements and their interconnection is shown in the figure.

Parallel processing requirement

The order in which the two boxes (statements) are considered is not dictated from the
connection diagram. When expressed in ESL the statements may be presented in any order.
This is true in general: statements in the model description part of the DYNAMIC region may
be presented in any order.

Note that ESL automatically sorts the statements into an appropriate computational order. In
order to do this it takes note of the class of the variables - in this illustration the submodel
"subsys" is assumed to give variables A and B the property of "inherited memory" variables.
Statement sorting, and the terms "class" and "inherited memory" are explained in ESL
Operation and Program Structure.

Having established the difference between procedural and model code statements let us
examine the example in more detail, statement by statement.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-30

The first presentation of the Van der Pol equation is a single second-order differential
equation in line 22 which generates the value X. The differential equation must be arranged in
the form of an assignment of a value to the highest derivative (X"), and expressing the Van
der Pol equation in this way gives:

X'' := K * (1 - X ** 2) * X' - X;

In line 22 part of the computation of the expression is undertaken in the procedure FUN,
described below, and the statement reduces to:

0022 X'' := FUN(K,X)*X'-X;

This presentation specifies to ESL that X is determined by subjecting the variable X'' to an
integration process to obtain X', and then subjecting X' to a second integration process to
obtain X. Whenever integration is performed it is necessary to specify the initial value, or
condition, of the "state" variable which will contain the result of the integration. As both X and
X' are state variables obtained as a result of an integration, both variables must be given
initial values. The assignment statements in the INITIAL region, line 20, initialise X to the real
value 0.1 and X' to zero. The INITIAL region is executed prior to the start of each simulation
run.

State variables, which contain the result of an integration, are also known as memory
variables. This is because their current value depends on the past, or history, and not on the
current values of simulation variables. That is, these variables have "memory" of the past.
Note that the rate-of-change of a state variable (for example, X'') depends on an algebraic
computation involving current values of simulation variables, and such variables are classified
as "algebraic" variables.

The second solution of the equation is obtained from the statement in line 23, that is:

0023 Y := INTEG(X,X'); --Library submodel (same as INTGL)

The library submodel INTEG has been included in the study by the use of the INCLUDE
"integ" statement in line 13. It is used to integrate X', starting with an initial condition of X. The
first input argument of the submodel call, X, is used by the submodel as an initial condition for
the integration. Although X changes during the course of the simulation run, the submodel
only uses the argument X during its initial region and prior to starting the simulation. It uses
0.1, the initial value of X - therefore, as the initial condition which is the initial value for the
output Y. The second input argument, X', which is the variable to be integrated, is generated
during the solution of X in line 22. The submodel's output is Y whose value is the result of the
integration, and Y is classed as an "inherited state" variable because it has inherited the state
property (computed as a result of an integration) from the submodel INTEG. Submodels that
have outputs which are the result of integration, have the responsibility of setting the initial
condition of those outputs.

The ESL compiler checks that actual arguments, that is the output argument Y and the input
arguments X and X', are consistent with regard to type and dimension with the formal
arguments in the submodel declaration. Furthermore it checks that the actual arguments are
consistently used, for example, that Y has not been set elsewhere in the model.

For submodels with more than one output argument the following style of presentation is
used:

P,Q,R:= SUB3OUT(A,B);

In this case P, Q and R are all output arguments of the submodel SUB3OUT.

Note that a submodel invocation (call) statement always appears in the forms shown, and
should never be part of an expression. The following statement is illegal:

Y:= A * INTEG(X,X'); -- ILLEGAL

The final presentation of the equation, in line 24, is almost identical to the second
presentation, that is:

0024 Z := INTGL(0.1,X');

In this case the submodel INTGL has been explicitly presented in lines 9 to 11, and is
functionally identical to the library submodel INTEG. The only other difference is that the initial

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-31

condition of 0.1 is explicitly presented as the first input argument. Note that the formal input
argument IC, line 10, is declared as CONSTANT REAL, which means that its value is
constant throughout a simulation run. Even if the actual argument changes it has no further
influence on the submodel operation, because the constant declaration ensures only the initial
value of the argument is used. In this case IC is only used in the INITIAL region, and clearly
should be regarded as constant for the duration of the simulation run.

The absolute value of X (absX) is computed in line 25 where an IF-clause is used, that is:

0025 absX := if X >= 0.0 then X else -X;

The IF-clause is a means of specifying a switching operation, or a simple discontinuity. In this
case the IF-clause switches (or sets) absX to be equal to the value of X or -X depending
whether the logical expression is true or false (X >= 0.0). While X is positive absX takes the
value of X, otherwise it takes the value of minus X.

The instant of switching, when X >= 0.0 changes its logical value, is detected after the actual
point of transition, but within a specified error bound. This means that at the point of detection
the discontinuity has just occurred and the value of X is nominally zero, that is, it is less than
the specified error bound. The user may change the error bounds by setting the reserved
variable DISERR (see the discussion of error bounds in Modelling Code).

The variable absX is classified as an algebraic variable because its value depends on an
algebraic computation involving the current values of other model variables.

Two WHEN blocks follow in lines 26 to 31, that is:

0026 when X' < 0.0 then

0027 if X > XMAX then XMAX:= X; end_if;

0028 when X' >= 0.0 then

0029 if X < XMIN then XMIN:= X; end_if;

0030 print "Minimum ",X :-13.5," detected at T= ",T :-13.5;

0031 end_when;

The first block, lines 26 to 27, could have been terminated by an END_WHEN after line 27,
but as it is followed by a second WHEN block, lines 28 to 31, the END_WHEN may be
optionally omitted. Although the two blocks are concatenated they operate as two separate
WHEN blocks.

The WHEN block is an alternative method of specifying discontinuities, in which the instant of
the transition of the logical expression, rather than the logical state of the expression, is of
interest. The body of the first WHEN block, line 27, is executed only at the instant when the
logical expression X' < 0.0 becomes true. When X' < 0.0 becomes true, X is a maximum - the
rate-of-change of X has changed from a positive value, become zero, and is now negative, so
reducing X from its maximum value.

The body of the WHEN block comprises procedural statements, and in the body of the first
WHEN block, line 27, the value of X is tested to determine if the maxima just detected is the
largest that has occurred at this point in the simulation run.

The second WHEN block performs a similar function to determine the minimum value of X,
but in this case it also prints the minimum value detected and the time (T) at which it was
detected. The two format control elements (:-13.5) in the PRINT statement indicates that the
variables X and T are to be output with a maximum field width of 13 characters, 5 significant
figures, and the minus sign indicates that spaces are to be suppressed.

The detection mechanisms used for discontinuities occurring in a WHEN statement are the
same as those used for IF - clause discontinuities. The point at which a WHEN body is
executed is always immediately after the actual instant the WHEN logical expression became
true. Note that WHEN statements do not become active until the simulation is underway, that
is, they are not triggered at the starting time of the simulation run.

The WHEN statements have been used to define the simulation parameters XMIN and
XMAX. Variables are classed as simulation parameters when they are initialised prior to
entering the dynamic region, and changed, or updated, within the body of a WHEN statement.
Parameters are memory variables, like state variables, as they remain constant during an
integration step with a value that depends on the past, or history, rather than on other current

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-32

values. At a discontinuity ESL performs additional computations (extra passes of the dynamic
region) to update the values of simulation parameters before proceeding with the simulation.

Step region

The step region, line 32 to 33, that is:

0032 STEP

0033 PREPARE "BENCH3",T,X,X',X'',absX,Y,Z;

is executed at the start of a simulation run, and after each integration step, that is at least
NSTEP times for each communication interval. This region is expressed using procedural
code statements, and gives the user the opportunity to output results at the maximum
frequency as the simulation proceeds. This region is executed immediately before and after a
discontinuity so enabling the exact result of switching operations to be observed. Note the
value of the reserved variable DIS_ST indicates why the STEP region has been invoked, that
is: ordinary step (0); communication point (1); before a discontinuity (2); or immediately after a
discontinuity (3). This enables users to select the output that is required.

The PREPARE statement is used to save all the STEP results contained in the listed
variables. The file bench3.dsp is created which contains the results of all (5) runs. Note that
ESL appends the extension .dsp if none is specified. The Post Run Analysis option of ESL-
Studio may be used to perform post-mortem graphical analysis of the results prepared during
a simulation session.

Communication region

The COMMUNICATION region is also expressed in terms of procedural code statements, and
is the place to specify the input and output to be made at each communication point. That is
at the start of a simulation run, and then at regular intervals of simulated time equal to CINT.

In this case a PLOT statement specifies that a graph is plotted as the simulation proceeds:

0034 COMMUNICATION

0035 PLOT "Phase plane plot",X,X',-2.0,2.0,-2.0,2.0;

The graph will have the title "Phase plane plot", and plot X on the horizontal axis, and X' on
the vertical axis. The four numbers specify the lower and upper axis limits for the horizontal
and vertical axis respectively.

Additional variables may be simultaneously plotted on the same axes during a simulation run,
for example:

PLOT T,X [X', absX] 0,TFIN,-4.0,4.0;

In this case X, X' and absX are all plotted against T, and the optional title specification has
been omitted.

A statement that is especially designed for the COMMUNICATION, or STEP, region is the
TABULATE output statement which produces a tabular presentation of results as the
simulation progresses. For example:

TABULATE T,X,X',X'',absX;

could appear at this point in the program. It causes a heading, comprising the names of the
listed variables (T, X etc) to be output at the start of each simulation run. At each execution of
the statement, it outputs the values of the listed variables in a tabular format. As the
simulation progresses a table is formed with each column headed by the variable name which
corresponds to the column data.

Although a TABULATE statement is designed for the COMMUNICATION or STEP region, it
may be used in any procedural code section. When used outside the simulation loop both the
heading and values are output each time it is executed.

Output from a TABULATE statement may also be directed to a file, see Input-Output and File
Handling.

Conditions for terminating a run are normally inserted in the STEP or COMMUNICATION
region. In this example we are relying on the default termination which occurs when T has

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-33

advanced to TFIN, the final time. An explicit termination could be specified in addition, for
example:

TERMINATE ABS(X) > 2;

would cause premature termination of the simulation run if the absolute value of X exceeded
the specified value (2.0). Note that the TERMINATE statement may also be used to exit from
a procedural loop, for example, a FOR or WHILE loop.

Initial region

The INITIAL region comprises procedural code statements and is executed before the
simulation loop (DYNAMIC region) is entered. It has the function of establishing initial
conditions, and performing any pre-run calculations. In this example it is:

0019 INITIAL

0020 X:=0.1; X':=XD0; XMAX:=0;

Note that in the declaration statements XD0 and XMIN were given initial values. This
initialisation occurs at the start of each simulation run, and, therefore, it is functionally
equivalent to explicit assignments in the INITIAL region. That is:

XD0:= 0.0; XMIN:= 0.0;

appearing in the initial region is equivalent to the initialisation used in the declarations in lines
17 and 18.

Terminal region

The TERMINAL region is expressed as procedural code and contains end-of-run calculations
and output. In the example the maximum value of X, (XMAX) and the value of the equation
parameter K for the simulation run just completed are stored in an array. In addition, the
maximum and minimum values of X are printed, that is:

0036 TERMINAL

0037 RUN:=RUN+1; ARR(RUN,1):=K; ARR(RUN,2):=XMAX;

0038 PRINT "Run no, Xmax, Xmin: ",RUN,XMAX,XMIN;

Submodel definition

A PROCEDURE (or subroutine or function) is the basic building block in a procedural
(conventional scientific) programming language. The SUBMODEL has an equivalent function
in the modelling program code sections of ESL.

The submodel provides the user with the mechanism to define one part of a simulation
separately from the remainder. It is intended that a submodel should specify a part of the
dynamic system that can be physically separated from the rest of the system. For example,
an electronic amplifier used to control the X-coordinate position of the drilling bit of an
automatic drilling machine may be a good candidate for treatment as a submodel. A given
submodel can be invoked several times from a model (or other submodels).

Submodels differ from procedures in that separate instances of a given submodel are active
simultaneously. Techniques are used to avoid conflict between the local data variables
associated with different calls of the same submodel. This is achieved by arranging that each
invocation of a submodel uses different storage for all locally defined variables. This allocation
of storage allows the same submodel to represent more than one similar physical sub-
system. For example, one submodel could represent both X and Y amplifiers in a simulation
of an automatic drilling machine, although two separate set of submodel data are maintained.

The definition of a submodel is similar to that of a model, and consists of three main
elements. First is the submodel declaration, which specifies the name of the submodel and its
inputs and outputs. This is followed by all declarations of variables and constants used locally
in the submodel. The example does not have declarations of this kind. Finally there is the
submodel body which must contain a dynamic region which may be preceded by an initial
region. The dynamic region may optionally have an associated step and/or communication
region. Unlike a model, it may not contain a terminal region.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-34

Submodel statement

The submodel definition is introduced by the submodel statement (line 9), that is:

0009 SUBMODEL INTGL(Real: out:=Real: IC,in);

This shows that the submodel called INTGL has one real output (out) and two real inputs (IC
and in). The inputs are set by the model which calls the submodel. The value of the output
(out) is returned to the model. As with all ESL subprograms, the ESL compiler checks that the
actual arguments used in the call, in line 24, are consistent with the formal arguments in line
9. With modelling subprograms (submodels, models and segments) the ESL compiler makes
comprehensive checks to ensure that the submodel is properly defined and called with
appropriate arguments.

Submodel body

The submodel in Bench3 which defines a simple integrator, consists essentially of the simple
differential equation:

out':= in

The differential equation forms the dynamic region of this submodel and the state variable
(out) is initialised in the initial region by the statement in the same line to the value IC, that is:

0010 INITIAL out:=IC; DYNAMIC out':=in;

0011 END INTGL;

Note that the keywords INITIAL and DYNAMIC do not require semicolons and that the
submodel is terminated by the END INTGL; statement.

This submodel's output (out) is the result of an integration and is a state variable and is,
therefore, a memory variable. The actual corresponding argument, Z in line 24, inherits the
memory attribute and has the property of being an inherited memory variable.

Procedure definition

The procedure is the simplest form of code module and it describes a procedural subprogram,
that is a function procedure or a simple procedure. The function procedure FUN, whose
declaration statement is in line 5, specifies two real arguments (CONST and VAR) and the
information that the procedure behaves as a function by returning a real answer, that is:

0005 PROCEDURE FUN(REAL:CONST,VAR)RETURN REAL;

0006 REAL:SQUARE; SQUARE:=1-VAR**2; RETURN CONST*SQUARE;

0007 END FUN;

Omission of the RETURN specification would indicate that the procedure does not return an
answer, and that it should be used as a simple procedure rather than a function.

Line 6 contains three statements: the first statement declares a local real variable SQUARE;
the second statement computes an intermediate result and sets SQUARE; and the final
statement returns the value of the procedural function by means of a RETURN statement.

The procedure FUN is invoked, or called, from within the expression in line 22 of the model.
The ESL compiler checks that actual arguments, for example, K and X in line 22, are
consistent with regard to type and dimension with the formal arguments, that is, CONST and
VAR in the procedure declaration in line 5.

A procedure may be declared without a RETURN type specification:

PROCEDURE SUB_PROC(REAL:OUTPUT1,OUTPUT2, INPUT1,INPUT2);

The output arguments are presented first, then the input arguments. This convention is
necessary to be consistent with ESL modelling subprograms, and allows ESL to check
consistent use of modelling variables used as actual arguments within modelling
subprograms. A non-function procedure may only be called from a procedural code region, for
example:

SUB_PROC(O1,O2 := I1,I2);

ESL checks that the actual output arguments (O1 and O2 in this case) are variables (not
expressions), and that they can accept new values returned from the called procedure. Any

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-35

actual arguments which appear before the ":=" symbol must be capable of accepting a
returned value, that is variables, subscripted variables, arrays or array slices, but not
expressions. Arguments appearing after the ":=" sign are not restricted and may be
expressions.

ESL does not check that the procedure definition uses its formal arguments in the manner
indicated by the call (that is as output or input). It is the user's responsibility to be consistent in
the procedure definition and the call.

If no ":=" appears in the calling argument list, all arguments are regarded as outputs, and may
not be expressions. Alternatively if the assignment symbol appears before the first argument,
for example:

SUB_PROC(:=x1,x2,x3,x4);

all arguments are treated as inputs.

Arguments of function procedures are treated as inputs.

Note that local data variables retain their values between calls of the procedure, consider:

REAL: SQUARE /0.0/;

The initialisation of SQUARE with the value 0.0 occurs once only at the start of program
execution. If SQUARE is changed in a call to the procedure, it will have its most recent value
available in the next call to the procedure. In modelling subprograms the initialisation process
occurs at the start of every simulation run, not just at the start of the program.

Standard functions (Procedures)

The following standard functions are part of the ESL language and are implicitly declared:

SIN sine of argument (radians)

ASIN arc-sine of argument

COS cosine of argument (radians)

ACOS arc-cosine of argument

ATAN arc-tangent of argument

ATAN2 arc-tangent of two arguments

LOG natural logarithm of argument

EXP exponential of argument

ABS absolute value of argument

SQRT square root of argument

RAND pseudo-random number

INT integer value of argument

LEN returns total number of array elements

LEN_1 number of elements in first dimension of array

LEN_2 number of elements in second dimension of array

LEN_3 number of elements in third dimension of array

ACHAR character value corresponding to ASCII code

IACHAR ASCII code corresponding to character value argument

INV inverse of square matrix

DET determinant of square matrix

TRNSP transpose of a matrix

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-36

SUB_STRING returns position in first character string argument where the second character
string argument is encountered as a sub-string

The ATAN2 function is an alternative form of ATAN which takes two arguments, and is
equivalent to ATAN (arg1/arg2). The result is expressed in radians in the range:

- < result <= π,

while ATAN gives a result in the range:

-π/2 <= result <= π/2.

The LEN functions work on all array types, including character strings.

SUB_STRING returns a zero if the second character string argument is not located in the first
sub-string argument (identical to Fortran INDEX).

RAND(X) produces a uniformly distributed real pseudo-random number in the range 0.0 to
ABS(X), where X is a real. A negative or zero value for X re-seeds the number generator to
start at the first number in the 4294967296 sequence. The formulae used is:

RAND(X) = S * X/M

where S=(SO * B + C)MOD M

SO is the last seed

B=69069

C=1

M=232

The INV function inverts real or integer square matrices and returns a real square matrix.

The DET function calculates the determinant of real or integer square matrices and returns a
real scaler.

The TRNSP function produces the transpose of real, integer, logical or character matrices
and returns a transposed matrix of the same type.

A singular matrix will cause the DET and INV functions to give a run time error. The
INTERACT service will be invoked.

Note that care should be taken in using ASIN and ACOS as they are not defined with
arguments outside ±1.0. The ATAN function does not have this limit.

The character and matrix functions are described in detail in Arrays, Matrices, Vectors and
Characters.

Chapter 3 ESL Basic Use

ESL Simulation Software - Development Guide 3-37

3.3.11 Results from the ESL example

The results of running the example ESL program (bench3) are presented. The print-out
contains the text output generated when running the program using the ESL FORTRAN
translator approach, and the graph shows the output from the PLOT statement when the
program is run.

bench3 print-out from Translator

ALGO,CINT,NSTEP: 1 .1 1

Minimum -0.54761 detected at T= 3.47603

Minimum -1.95724 detected at T= 9.10959

Run no, Xmax, Xmin: 1 1.4784 -1.9572

Minimum -1.07265 detected at T= 3.34763

Minimum -2.01486 detected at T= 9.14304

Run no, Xmax, Xmin: 2 1.9264 -2.0149

Minimum -1.36838 detected at T= 2.91687

Minimum -2.01989 detected at T= 9.17648

Run no,Xmax, Xmin: 3 2.0069 -2.0199

Minimum -1.50791 detected at T= 2.55872

Minimum -2.02236 detected at T= 9.30282

Run no, Xmax, Xmin: 4 2.0206 -2.0224

Minimum -1.58431 detected at T= 2.28501

Minimum -2.02330 detected at T= 9.54240

Run no, Xmax, Xmin: 5 2.0231 -2.0233

 RUN NO. K XMAX

 1 1.0000 1.4784

 2 1.5000 1.9264

 3 2.0000 2.0069

 4 2.5000 2.0206

 5 3.0000 2.0231

Graph generated by PLOT statement when program run

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-1

CHAPTER 4

4 ESL Operation and Program
Structure

This section describes the structure of the ESL language, its operation and fundamental
principles.

Contents:

• ESL Program Types

• ESL Program Structures

• Procedural Program Structure

• Modelling Subprogram Structure

• Variables - Scope, Type and Usage

• The Simulation Process

4.1 ESL Program Types
ESL supports a number of functionally different program types:

• ESL STUDY: a conventional ESL simulation program with an Experiment which calls
a model and its subprograms.

• ESL REMOTE: defines an ESL modelling segment which is to be executed on a
separate processor as part of a distributed simulation.

• ESL EMBEDDED: defines an ESL modelling segment which is to be embedded in,
and called from, a FORTRAN or C++ main program.

• ESL non program: allows the user to "check" compile ESL source code without
producing a .hcd file.

Using these different program types users may develop simulations which run as a single
process, or as several processes executing on a distributed network of computers.

4.1.1 The ESL STUDY

The ESL STUDY is a basic ESL simulation program that begins with the keyword STUDY and
must end with the keyword END_STUDY. All of the program components shown in the below
may be included.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-2

ESL Program Structures

Within a basic STUDY there are two main sections, the "System Definition" and the
"Experiment". The System Definition describes the requirements of the simulation, both
statically and dynamically, whereas the Experiment describes the procedural operations
which control the simulation runs. The system definition, (which is divided into separate
modules such as MODEL, SUBMODEL etc.), and the Experiment can both be regarded as
individual modules for the purposes of compilation. The main task of the Experiment is to
define the simulation runs to be performed, and possibly set parameter values to control the
run (alternatively such parameters may be set in the MODEL INITIAL region). The Experiment
calls one or more Models (sequentially), which in turn call other subprograms. Modules must
be declared before they are used and for this reason the Experiment is placed at the end of
the ESL STUDY.

4.1.2 The ESL REMOTE program

The REMOTE program defines an ESL segment (part of the system being modelled) which is
to be executed as a remote process, either on the same processor, or on a different
processor on a computer network. It is identified with the keyword REMOTE (no end
keyword), and may include PROCEDUREs, PACKAGEs, SUBMODELs, and one, and only
one, SEGMENT. It extends the concurrent processing concept of segments into true
distributed simulation. ESL Segments describes how SEGMENTS are used.

4.1.3 The ESL EMBEDDED program

The EMBEDDED program defines an ESL segment (representing the system being modelled)
which is to be called from a FORTRAN or C++ main program. It is identified with the keyword
EMBEDDED (no end keyword), and like the REMOTE program may include PROCEDUREs,
PACKAGEs, SUBMODELs, and one SEGMENT. The EMBEDDED program is fully described
in ESL Segments which examines SEGMENTS in detail.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-3

4.1.4 The ESL non program

A "non-program" is a fragment of ESL code which does not itself constitute a complete
program. For example, it could be a SUBMODEL, PROCEDURE or PACKAGE which is to be
inserted into an ESL program using the INCLUDE statement. Any file which does not start
with the keyword STUDY, or REMOTE or EMBEDDED, is a non-program and can be
checked with the compiler without producing a .hcd file.

When writing a SUBMODEL, or function (PROCEDURE), for use as an ESL-Studio simulation
element, this should be regarded as a non-program and compiler checked before importing
into ESL-Studio. The points to note with ESL-Studio text subprograms are:

• The file must have a .esl extension.

• The file-name must match the SUBMODEL, or function PROCEDURE, name.

4.2 ESL Program Structures
The basic ESL program structure identifies the six basic modules of an ESL program:

• Data definition PACKAGE.

• Procedural (non-modelling) subprogram - PROCEDURE.

• Modelling subprogram - SUBMODEL.

• Parallel modelling subprogram - SEGMENT.

• Model subprogram - MODEL.

• Simulation procedural EXPERIMENT.

Not all the modules making up a program need be contained within a single .esl file. Other
files in the current directory or the ESL library directory, or indeed in any directory with an
appropriate path definition may be introduced with the INCLUDE statement.

To the above list can be added the EXTERNAL procedures, which are expressed in another
language such as FORTRAN, C or C++, and are also stored in separate files.

These program modules are described in detail in the following sections, but first ESL data-
types and their declarations are considered.

4.2.1 ESL data types

Each ESL module has an associated local data set, which is accessed by named variables
declared within the module. Note SUBMODELs have separate local data sets for each
invocation. Strict rules apply to communicating data between modules, which may only by
achieved through subprogram arguments, or by means of the ESL PACKAGE mechanisms.

ESL supports the four basic data types, that is: REAL floating point numbers, which may have
both a whole number and fraction parts; INTEGER numbers or whole numbers; LOGICAL
data only having the values TRUE or FALSE; and CHARACTER data. Arrays of up to three
dimensions may be specified for each of the basic data types.

Type declarations

Four basic type keywords are used to declare variables in ESL:

REAL

INTEGER

LOGICAL

CHARACTER

All variables must be declared prior to use (with the exception of the RESERVED variables).
Once declared, a variable may not be re-declared within its scope, although a variable with
the same name may be declared locally in another subprogram without conflict. The
declaration may optionally include an initialisation of that variable, for example:

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-4

REAL:alpha,beta/4.6/;

INTEGER:count/0/;

LOGICAL:flag/true/;

CHARACTER:message(18)/"This is a message!"/;

Any of the basic types may be declared as one, two or three dimensional arrays by including
the size of each dimension in parenthesis after the variable name. In the example above, the
character variable message is a one dimensional array of 18 elements. For character
declarations, the literal string must exactly match the array size. See Arrays, Matrices,
Vectors and Characters for detailed specification of array declaration and use.

The values given to variables must match their declared type. A REAL set to 0 or INTEGER
set to 0.0 will cause an error message, and compilation failure. A logical must be set to either
TRUE or FALSE which may not be abbreviated.

Constants are declared by preceding the above declarations by the keywords CONSTANT or
PARAMETER. Values of constants may not be changed from that given in the declaration.
Parameters are similar to constants, but they may be changed "externally" by a simulation
driver file (see ESL Run Control) or via ESL-Studio/ESL-SEC (Simulation Execution Control).

Non-variable declarations

Besides declarations of data variables, a module's local declaration section may also specify
access to ESL PACKAGE data by means of a USE declaration, for example:

USE PACK_NAME;

In addition external non-ESL coded procedures (for example, FORTRAN or C) may be called
from a module provided they are declared by an EXTERNAL declaration.

4.2.2 The ESL experiment

This is the default region of an ESL study. Any section of code not defined as a subprogram
or data package is termed the experiment. It is procedural, meaning the code is executed in
the order in which it is presented. A STUDY comprising only the experiment is valid and may
be compiled and run. The experiment region is always the last part of the STUDY - the
comment "-- EXPERIMENT" is helpful to identify this region but is not mandatory. The
experiment may only call MODELs or PROCEDUREs, in sequence. The experiment is used
to specify simulation runs by calling one, or more, MODELs. It may also be used to set
parameters which control each simulation run, for example, simulation start time, finish time,
integration algorithm etc.

Alternatively this function may be undertaken by the MODEL INITIAL region.

4.2.3 The ESL MODEL

The MODEL is the main "simulation module" of an ESL program. Any number of separate
MODELs may exist but only one may be active at one time. A detailed description of a
MODEL body, and other modelling subprograms, is given in Modelling Subprogram Structure.

A MODEL is declared by the keyword MODEL, followed by the model name, which may be
followed by a list of arguments in parenthesis, or empty parenthesis, or no parenthesis at all.
In each case the declaration is terminated with a semi-colon, ";". For example:

MODEL model_name (REAL:variable1:=REAL:variable2);

MODEL model_name ();

MODEL model_name;

The name may be any length up to the end of a full line (132 characters), but only the first 28
characters will be recognised.

The MODEL arguments must match the actual, or calling arguments, with respect to number
and type. Note the use of the ":=" token in the above example, which distinguishes between
the output arguments, which come first, and the input arguments, which follow. If this token is
omitted, all arguments will be assumed to be outputs. A type declaration may be followed by
any number of argument names of that type, separated by a comma. Where a new type
declaration is required, then a semi-colon, ";", is used as a separator.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-5

MODEL model_name (REAL:variable1,variable2;INTEGER:ivar1,

 ivar2,ivar3:=REAL:variable3,variable4;

 INTEGER:ivar4;FILE:record);

In the above example, two real and three integer output arguments are defined, with two real,
one integer and a file specifier input argument. Note that statements may be continued on
subsequent lines. The end of line must not, however, appear within an identifier, text string, or
number. All ESL data types are permitted in the argument list, although for a MODEL, or
SEGMENT, arrays must have explicit dimensions (not implicit "*" dimensions which are
permitted in all other ESL subprograms).

The MODEL may only be called from the experiment and will take the form shown below:

model_name (out1,out2,out3,out4,out5:=in1,in2,in3,filename);

where the argument list must match the MODEL declaration in terms of number, order and
type. The position of the ":=" symbol which identifies the output and input arguments must
also match in the call and declaration. Output arguments must be variables, but the input
arguments may be variables, constants, numbers or expressions of the appropriate type.

The MODEL must be terminated with an END statement which may optionally include the
MODEL name. If the name is included however, the compiler will check that it is correct and
issue an error if not.

4.2.4 The ESL SUBMODEL

The SUBMODEL provides one method of allowing a simulation to be divided into functional
areas or modules. It is similar to the MODEL except that it may only be called from the
DYNAMIC region of a MODEL, SEGMENT or another SUBMODEL. A SUBMODEL call is
classed as modelling, or non-procedural code. This means that several invocations of the
same SUBMODEL may exist simultaneously, called from different sections of modelling code
regions. Each invocation of a submodel is associated with separate submodel data storage.
For example, the variable X locally declared in a submodel, has different storage associated
with X for each separate invocation of the submodel. Note however that the SUBMODEL is
not recursive - it cannot be called, directly or indirectly, from its own DYNAMIC region.

With the exception of the TERMINAL and ANALYSIS regions, which are not permitted in a
SUBMODEL, the internal structure is the same as the MODEL.

The declaration of a SUBMODEL is similar to that of the MODEL, but consider the simple limit
submodel:

SUBMODEL LIMIT(REAL:y := CONSTANT REAL:LL,UL; REAL:x);

REAL: range,xnorm;

INITIAL

 range:= UL-LL;

DYNAMIC

 xnorm:= (x-LL)/range;

 y:= if xnorm > 1.0 then UL

 else_if xnorm < 0.0 then LL

 else x;

END LIMIT;

Here the input arguments LL and UL are declared to be CONSTANT, which means that their
values will be taken to be the same throughout the simulation run. ESL exploits this
knowledge and produces faster, optimised code, by only passing the CONSTANT arguments
to the SUBMODEL once at the start of a simulation run, and not every time the value of the
limited output is required. Although CONSTANT input arguments may be specified for
MODELs and SEGMENTs ESL currently takes no special action.

Unlike a MODEL, a SUBMODEL allows the implicit dimensions in array arguments, for
example, ARRAY(*,*).

The SUBMODEL call, however, is very different to that of the MODEL, that is:

out1,out2:=submodel_name(in1,in2,in3);

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-6

The call is an assignment with the output arguments appearing as variables to the left of the
assignment symbol, ":=", (the order of course must be the same as in the declaration). Input
arguments are given in parenthesis. SUBMODELs without arguments, or with input
arguments only, would be called as:

No_args_submodel;

another_no_args();

no_output_args_submodel(in1,in2);

The SUBMODEL call is a complete statement and cannot be embedded as part of an
expression. Like the MODEL call arguments, actual arguments must match formal arguments,
but the "*" symbol may be used to dimension arguments arrays where the array dimension is
defined by the actual argument.

4.2.5 The ESL SEGMENT

A third type of modelling subprogram is the SEGMENT which is almost identical to and runs
in parallel with the main MODEL. Its operation can either be as:

• Emulated parallel processing: that is running in the same process as the MODEL and
included within the same STUDY.

• Remote parallel processing: running as a separate process on the same or different
processor to the MODEL (for example, over a network).

• As an embedded simulation running under the control of a program other than the
ESL MODEL, for example, a C++ program.

These options are discussed in ESL Segments, and the basic model-segment relationship is
illustrated in below.

Model - Segment Linking

The structure of a SEGMENT is identical to that of a MODEL except that no TERMINAL or
ANALYSIS region is permitted. The declaration has the form:

SEGMENT parallel_seg(REAL:invar:=REAL:outvar);

or

SEGMENT parallel_seg(REAL:invar:=REAL:outvar) EXTERNAL;

The second form of declaration means that the SEGMENT is to be executed remotely in a
separate process. Note all the following code until after the corresponding END statement is
ignored if EXTERNAL is appended to the declaration.

An emulated SEGMENT may only be called from one place, the COMMUNICATION region of
a MODEL.

A remote SEGMENT may be called from the COMMUNICATION region of either a MODEL or
an embedded SEGMENT.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-7

The form of a segment call is:

parallel_seg(svar1:=svar2);

Note that the call may be conditional, that is the subject of an IF statement. Any number of
SEGMENTs may be specified and run simultaneously. The call to the SEGMENT in the
COMMUNICATION region basically has the task of receiving the output argument values
from the SEGMENT following the SEGMENT's solution of the last communication interval.
After the MODEL's COMMUNICATION region has been executed (and a SEGMENT call
made), the SEGMENT input arguments are passed to the SEGMENT, and it is instructed to
solve the next communication interval. An exception to this basic calling pattern is the first call
to a SEGMENT in a run. In this case the input arguments are passed to the SEGMENT during
the COMMUNICATION region call, to enable the SEGMENT to perform its initialisation and
return values for its initial output arguments.

4.2.6 The ESL PROCEDURE

There are two types of PROCEDURE, procedures and functions, which are non-modelling
subprograms. Both contain procedural code, and are identified by the keyword
PROCEDURE; functions being distinguished by a declared RETURN type. Procedures may
be called from any procedural code region (including a procedural block, or WHEN body, in
the DYNAMIC region of a modelling subprogram, but not directly from a DYNAMIC region).
Functions, however, may be called from expressions appearing in any region. Their primary
purpose is for non-modelling, or procedural, programming, however they may play an
important part in the simulation specification.

4.2.7 The ESL PACKAGE

The PACKAGE provides an means of accessing the same data from different subprograms.
Once data in a PACKAGE has been declared, it may be accessed by any subprogram
specifically requesting access to that PACKAGE.

A PACKAGE is declared after the STUDY keyword and before modules where it is required,
for example:

PACKAGE users_data;

 REAL:var1,var2,var3;

 INTEGER:ivar1/2/,ivar2/3/;

 CONSTANT INTEGER:ivar3/4/;

 CHARACTER: char1,char2;

END users_data;

Note that the optional initialisation of variables, except for the CONSTANT, which must be
initialised.

Subprograms which wish to access the PACKAGE data must include the following
declaration:

USE users_data;

This provides access to all the variables declared in the PACKAGE users_data.

Note that variables declared in a PACKAGE are of a class referred to as "procedural
variables" which restricts their use in modelling subprograms, see Variables - Scope, Type
and Usage.

PACKAGES are also a means by which ESL is able to share data with program code
expressed in other languages, for example, FORTRAN or C routines called as EXTERNALs
(see External Procedures). The package data may be exactly mapped on to a named
FORTRAN COMMON block.

RESERVED package

A special RESERVED PACKAGE, is defined which contains variables to control the
simulation process. These variables are specified in ESL Basic Use (see Reserved
PACKAGE).

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-8

Certain reserved variables may be changed prior to a MODEL call to define a simulation run,
or in fact in the MODEL INITIAL region. Access to the RESERVED variables is implicit in all
subprograms except procedures and functions which must include the statement:

USE RESERVED;

to gain access.

4.3 Procedural Subprogram Structure
The two types of PROCEDURE, that is procedures and functions, are non-modelling
subprograms. They contain procedural code, and their primary purpose is for non-modelling,
or procedural, programming, however they may play a part in the simulation specification.

Procedures

With a procedure subprogram formal arguments are declared within parenthesis in the normal
way, except that no distinction is made between inputs and outputs (the ":=" symbol is not
used). The compiler makes no checks on the actual use to which the variables are put. For
example, consider the declaration:

PROCEDURE proc_name (REAL:output,input1,input2);

Each formal argument could be either input or output, but in this case we assume the first
argument is output (it is set or changed in the procedure), and the remaining arguments
inputs. The PROCEDURE could be called with the statement:

proc_name (alpha_output := beta_input * factor, gamma_input);

Since the first formal argument is an output argument then the corresponding actual argument
must be a variable, for example, alpha_output, which can receive a value returned from the
procedure. The input arguments may be expressions or numbers, for example, beta_input *
factor, or variables, for example, gamma_input. It is erroneous to use an expression for an
actual argument when the corresponding formal argument is classed as output. ESL does not
apply the same rigid checks on procedural code as for the modelling modules, and does not
check that the procedure uses the actual arguments in the manner indicated by the call, that
is, as output or input.

Functions

Functions return a single value specified by a RETURN variable type following the
declaration:

PROCEDURE fun_name(REAL:theta,phi) RETURN REAL;

The formal arguments in parenthesis are inputs by default, and a single value of the type
indicated is returned. The body of the function must include a RETURN statement as the last
statement of the function, followed by a variable or expression of the type indicated in the
declaration:

PROCEDURE sumsquare(REAL:theta,phi) RETURN REAL;

 REAL:outvar;

 outvar:=(theta+phi)**2;

 RETURN outvar;

END sumsquare;

alternatively, the function body could consist the single statement:

RETURN (theta+phi)**2;

ESL allows additional RETURN statements to be included to indicate alternative exit points
from the function, but the last statement MUST be a RETURN. Functions may also return
arrays or character strings providing the returned type corresponds to that declared.

Calling a function PROCEDURE is also different in that it is called from an expression, and
may be considered as a single value in that expression. For example:

a:= alpha + sumsquare(b,c) * d;

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-9

will substitute the returned value in the expression. Functions used in this way may be
included in modelling code expressions in the DYNAMIC region.

Also note that ESL treats the arguments of the function as inputs, which should not be
changed by the function definition.

Standard functions

ESL includes a number of standard functions which may be used, without declarations, in any
expression. These are listed in ESL Basic Use (see Standard functions).

External procedures

Both functions and procedures may be written in another language, for example, FORTRAN,
C, or C++ and be called in the same way as "internal" ESL PROCEDURES. External
FORTRAN or C modules may be called from an ESL program that has been translated to
FORTRAN (esl -tf). External C++ modules may only be called from a C++ translated program
(esl -tcc). To satisfy the ESL requirement that all modules are declared before use the
EXTERNAL keyword is used in one of two ways.

For external FORTRAN or C procedures, an external statement must be placed in the
declarative region of the subprogram that calls the external procedure, for example:

EXTERNAL EXTSUB;

EXTERNAL REAL: EXTFUN;

In this example EXTSUB may be called as an ESL PROCEDURE, but unlike an internal
procedure ESL cannot check if the arguments are of the correct type, or whether there are the
correct number of arguments. The EXTERNAL function PROCEDURE is assumed to return a
REAL value, but no other assumptions are made. The two external procedures could be
called by:

EXTSUB(a := b*c, d);

x:= EXTFUN(y, z*z) * a;

The argument passing conventions between ESL and other languages are specified in
External Procedures, and this section describes the use of PACKAGE data by non-ESL
routines.

An alternative method, which allows more extensive checking for consistent use of externals,
and is mandatory for the C++ Translator is described below.

The form of the declaration is similar to the declarative statement used for an ESL procedure,
or procedure function. For example:

procedure ext_proc(real: r; integer: i, j; real:arr(*))EXTERNAL;

This declarative statement must appear in the same position as an equivalent ESL procedure.
That is, after the STUDY statement, and prior to the module where it is first used.

External function procedures are defined in a similar manner, for example:

procedure ext_fun(real: x) return real EXTERNAL;

procedure ext_int_fun(real: x) return integer external;

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-10

4.4 Modelling Subprogram Structure
This section describes the basic structure of the ESL Modelling Subprograms, (MODEL,
SUBMODEL and SEGMENT). Code in ESL Modelling Subprograms is represented in two
distinct ways. That is the procedural parts in which the order of calculation is exactly
specified, and the dynamic part which represents parallel, concurrent, simulation of the
modelled system components. The sequential, more conventional code is termed "procedural
code" and the dynamic part "modelling code".

4.4.1 Modelling code

Modelling code is restricted exclusively to the DYNAMIC regions of MODELs, SUBMODELs
and SEGMENTs. These regions may only contain modelling code, with two exceptions:
procedural code may be used in a WHEN block, or in a PROCEDURAL block.

Modelling code comprises:

• Assignment statements, which include differential and transfer function specifications,
and the use of an IF-clause.

• SUBMODEL calls.

• WHEN statements, for detecting event discontinuities.

• PROCEDURAL blocks, for including procedural code.

• ESL also restricts the variables that can be directly set in the DYNAMIC region to
algebraic variables only, see Variables - Scope, Type and Usage.

4.4.2 Procedural code

Any code that executes in the sequential order in which it is written is termed procedural
code. In ESL this comprises all statements such as loops, PROCEDURE calls, file operations
and general expression assignments. The only way to use procedural code in a DYNAMIC
region is in the body of a PROCEDURAL block or the body of a WHEN statement block.

The WHEN statement block

The WHEN statement allows "events" to be detected, at which time the body of the WHEN
block is executed. For example:

WHEN T >= 8.125 THEN

 Y:= 0.0;

END_WHEN;

This treats the WHEN trigger condition T >= 8.125 as a discontinuity. ESL accurately detects
"when" the condition becomes TRUE, and at that point, and only that point, is the body of the
WHEN statement executed. See Modelling Code for a full discussion of the WHEN statement,
and discontinuities.

The PROCEDURAL block

The difference between modelling and procedural code is quite clear, and separation between
the two code forms is rigidly enforced. There are occasions however when it is necessary to
perform some procedural operations in the modelling code (DYNAMIC) region, for example,
setting individual array elements. To allow for this ESL provides the PROCEDURAL block
which is treated as a single modelling code statement which contains procedural code
statements. Variables local to the subprogram in which the block is placed may be used
within the block. It is necessary - to ensure correct variable usage - to place any variables
used in both the subprogram and in the block in an argument list after the block declaration.
This ensures that ESL will then sort the block as appropriate in the DYNAMIC region as it
does any other statement referencing these variables. The normal input and output
conventions with argument lists is observed.

The following example shows the setting of individual matrix elements (one of the few
occasions it is appropriate to use a PROCEDURAL block):

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-11

DYNAMIC

 B:=A*2;

 PROCEDURAL (A:=x,y,z);

 A(1,1):=x;

 A(2,1):=y;

 A(1,2):=z;

 END_PROCEDURAL;

The array, A, is an output and the variables, x, y, z, are inputs. The whole block is sorted, as
a single entity, along with other modelling code statements into an appropriate execution
order. In this example this means the PROCEDURAL block is executed before the
assignment to B is performed.

Any number of PROCEDURAL blocks may be used in any of the Modelling Subprograms.

As a general rule, PROCEDURAL blocks should only be used where absolutely necessary,
and in the prescribed way with proper inputs and outputs. They should not be used as a
means of bypassing ESL's strict variable usage checks.

4.4.3 Modelling subprogram regions

Modelling subprograms are divided into a number of distinct code regions, each region having
a particular function in the simulation process.

Declarations

A modelling subprogram starts with the declaration of the subprogram, which is followed by
local declarations required by the subprogram code. All variables used in the subprogram
must be declared. The scope of a locally declared variable does not extend to other
subprograms unless explicitly passed as an argument. Variables declared outside the
subprogram in PACKAGEs must also be explicitly declared by means of the USE package
statement which references all variables in that PACKAGE. (This does not apply to
RESERVED variables which are a special case and do not need declaring - except in
PROCEDURES.)

A variable may be declared by a "type" keyword followed by a colon and then the variable
name(s), for example:

REAL:alpha,beta(2,2);

INTEGER:gamma,theta;

LOGICAL:flag1,flag2;

CHARACTER:string1(20);

FILE:record;

Type declarations may optionally include initial values, for example:

REAL:alpha/3.3/,beta/4.4/;

These variables are initialised at the start of each simulation run.

Data values are mandatory if declaring a constant or parameter:

CONSTANT REAL:pi/3.14159/;

PARAMETER INTEGER:n1/5/;

INITIAL region

The INITIAL region is introduced with the keyword INITIAL, see Basic MODEL Structure, and
it is used to initialise variables, or to carry out any necessary calculations, prior to starting the
simulation run. It may also set values of RESERVED variables to control the simulation run.
The INITIAL region is optional, and if it is used it must precede the DYNAMIC region.
Initialisation for certain types of variables, that is, "state variables" must be performed prior to
entering the DYNAMIC code region.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-12

Basic MODEL Structure

MODEL model_name();

-- declarations

...

...

INITIAL

-- procedural code (initial variable values)

...

...

DYNAMIC

-- modelling code

...

...

STEP

-- procedural code (executed after each integration step)

...

...

COMMUNICATION

-- procedural code (executed after each comm. period)

...

...

TERMINAL

-- procedural code (executed at end of simulation run)

...

...

ANALYSIS

-- procedural code (for steady-state analysis)

...

...

END model_name;

DYNAMIC region

The DYNAMIC region is mandatory for all modelling subprograms, and is where the modelling
code is placed. It is introduced by the keyword DYNAMIC and may optionally be followed by
the STEP, COMMUNICATION, TERMINAL and ANALYSIS regions. The region may be
empty, but the keyword DYNAMIC must appear in every modelling subprogram.

STEP region

The STEP region, which is introduced by the keyword STEP, and logically is part of the
DYNAMIC region, is used for procedural code and is executed at certain points in the
simulation, after each integration step. It is optional in MODELs, SUBMODELs and
SEGMENTs, and if used must immediately follow the DYNAMIC region.

COMMUNICATION region

The COMMUNICATION region, which is introduced by the keyword COMMUNICATION, and
logically is also part of the DYNAMIC region, is procedural code executed at precise points
during the simulation run (after each communication interval, CINT). It is optional, and if used
it must follow the DYNAMIC region and any STEP region.

TERMINAL region

The TERMINAL region, introduced by the keyword TERMINAL, is used to execute procedural
code when the simulation run is completed. This occurs either when the simulation time T
reaches TFIN, or the statement TERMINATE is activated. The statements in the TERMINAL
region will be executed immediately before returning to the experiment. It may only appear in
a MODEL subprogram, where it is optional, and if used must follow the COMMUNICATION or
STEP regions.

ANALYSIS region

The ANALYSIS region of the MODEL is a procedural code region introduced by the keyword
ANALYSIS. It is executed only on special MODEL calls from the experiment (ALGO set to
LIN1 or LIN2), and is used to undertake steady-state analysis and linearization. It may only
appear in a MODEL, where it is optional, and then it must be the last region of the MODEL.
The ANALYSIS region is fully described in Steady-State Analysis.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-13

4.5 Variables - scope, type and usage
ESL is unlike a general-purpose programming language, in that the program features special
modules (experiment, MODEL, SUBMODEL, SEGMENT), which have a specific structure to
address the special requirements of simulation. The way in which it treats user declared
variables is also different.

The first point to note is that the scope of a variable is restricted to the section of program in
which it is declared (experiment, MODEL, SUBMODEL, SEGMENT or procedural
subprogram), that is, it is local to a module. It can be used in other modules if it is passed in
an argument list (for example, in a call to a MODEL or SUBMODEL), or if it is included in a
PACKAGE declaration, in which case it is common to all subprograms specifically requesting
access, by a USE declaration. All actual and formal arguments to subprograms must be of the
same type and with matching dimensions. The ESL compiler checks these points and
generates error messages where appropriate.

ESL is also different from general-purpose programming languages in the way in which the
ESL compiler treats variables according to their "class". The class is a property which the ESL
compiler gives to each variable, on the basis of how that variable is used. The following
classes, and sub-classes are used:

• Model variables.

• Procedural variables.

• Constants.

• ESL Parameters.

Model variables comprise:

• Memory variables.

• Algebraic variables.

• Inherited class variables.

Memory variables comprise:

• model parameters.

• State variables.

The following describes each class of variable in turn.

4.5.1 Model parameters

Model parameters (sub-class of memory variables) are declared in modelling subprograms
(MODELs, SUBMODELs or SEGMENTs), as local variables, or as an output argument of the
modelling subprogram. They are variables which are used in the DYNAMIC region, but have
a constant value during an integration step, or for longer periods. That is, as far as the
integration process is concerned these variables are constant, and their value does not
depend on current conditions. The derivation of model parameters is illustrated in the figure
below.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-14

Algebraic Variables and Model Parameters

The local declaration may include an initial value, or an INITIAL region assignment statement
may be used to give these variables an initial value. Model parameters, generally, once set
are intended to remain fixed throughout a period of the simulation, and are treated as
constants by the integration algorithm. Modification is however possible in procedural code
regions such as the STEP and COMMUNICATION regions, or in the body of a WHEN or
PROCEDURAL block in the DYNAMIC region. If set in a WHEN block, the variable will be
updated at the instant the WHEN triggers, and subsequently the simulation (integration) will
see a new constant value. Note that the body of a WHEN statement is executed between
integration steps, effectively as part of the STEP region, and not as part of the DYNAMIC
region.

Failure to give an initial value to model parameter will result in an error message.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-15

The following example shows two model parameters, tau and limit.

SUBMODEL SUB(REAL: y := REAL: x);

REAL: tau/1.0/,limit;

INITIAL

 limit:=10.0;

 y:=0.0;

DYNAMIC

 y':= (x-y)/tau;

 when y >= limit then

 tau:=1.5;

 when y < limit then

 tau:=1.0;

 end_when;

COMMUNICATION

 if t > 8.125 then

 limit:=12.0;

 end_if;

END SUB;

The variable tau is initialised in the declaration, and only changes value in the event of the
WHEN statement triggering. The body of a WHEN statement is executed between integration
steps, at the point detected as the WHEN trigger point.

The variable limit is given an initial value, in the INITIAL region, and then only changed in the
COMMUNICATION region, between integration steps, when t exceeds 8.125.

4.5.2 State variables

State variables (sub-class of memory variables) are declared in modelling subprograms
(MODELs, SUBMODELs or SEGMENTs), as local variables, or as an output argument of the
modelling subprogram. They are identified by ESL when differential equations are defined in
the DYNAMIC region, this is illustrated in the figure below. Each state variable is coupled with
a corresponding derivative algebraic variable. This means for differential equations of higher
than first order, more than one state variable will exist, for example:

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-16

Derivation and use of State Variables

Algebraic variable derivatives Corresponding state variables

x' := x

y'' := y', y

z''' := z'', z', z

The state variable value is produced as a result of integration (solving the differential
equation). Its current value depends on the past, or history, and not on current conditions.
This means that all state variables must be initialised to conditions existing at the beginning of
the simulation (T = TSTART). In the case of the "z''':=" example above, where a third order
differential equation is defined, all associated states require initial values, as shown below:

REAL:z; -- declaration

.....

INITIAL

 z :=0.0; -- initialisation of State variables

 z' :=1.0;

 z'' :=0.0;

.....

DYNAMIC

 z''' := -z''*5.2 + -- differential equation

Note that the initial start time for the simulation, TSTART, is not necessarily zero.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-17

4.5.3 Algebraic variables

Algebraic variables (a sub-class of model variables) are declared in modelling subprograms
(MODELs, SUBMODELs or SEGMENTs), as local variables, or as an output argument of the
modelling subprogram, or they may be undeclared "primed" variables (for example, x')
corresponding to the highest derivative of a state variable. They are classified by virtue of
being set in an assignment statement in the DYNAMIC region of a MODEL, SUBMODEL or
SEGMENT. Their derivation is illustrated in Algebraic Variables and Model Parameters. Any
variable which has already been initialised cannot be an algebraic variable, and similarly an
algebraic variable may not be set at any other point in the subprogram. If it is a derivative,
then one or more state variables will also be automatically defined, see last section. Algebraic
variables may appear on the right hand side of an assignment, or as an input argument to a
subprogram in the DYNAMIC region, or any region which follows.

Note that in the DYNAMIC region ESL automatically sorts the equations to ensure that
algebraic variables are set before use, and if this is not possible, an error message indicating
the existence of an algebraic loop is generated. It is possible for an Algebraic variable to be
set inside PROCEDURAL block providing it is included as an output of that block (in the
output argument list), and is not set elsewhere, see PROCEDURAL Block.

The following are examples of algebraic variables:

MODEL dynamic_calculator(REAL:output1,output2:=REAL:input1);

 REAL:temp1,temp2;

DYNAMIC

 temp1:=input1*sin(T);

 output1:=input1**2+temp1;

 output2':=output1;

In this example, temp1, output1 and output2' are all algebraic variables. Note that output2
is a state variable by virtue of output2' being a derivative.

Inherited class

Inherited class variables are declared in modelling subprograms (MODELs, SUBMODELs or
SEGMENTs), as local variables, or as an output argument of the modelling subprogram. The
class property is inherited from a called submodel. That is, a variable is used as an output
argument in a call to SUBMODEL, and inherits the class of the corresponding formal
argument of the SUBMODEL. Such variables are not set, given a value, in modelling
subprogram, but are set in the called SUBMODEL, and they may inherit the classes: state,
model parameter or algebraic.

The example below illustrates the case where a model variable sum inherits the state
variable class from the submodel where it is used as a state variable, out.

SUBMODEL submod(real:out);

INITIAL

 out:=0.0;

DYNAMIC

 out':=sin(t);

END submod;

MODEL mod;

REAL:sum;

DYNAMIC

 sum:=submod;

END mod;

4.5.4 Procedural variables

Procedural variables, including PACKAGE variables, are used for basic computational
purposes in procedural code regions of modelling subprograms, the experiment and any
PROCEDURES. They may be freely used with the following exception:

• They may not be set, given a value, in the modelling code of a DYNAMIC region or
appear as an output argument in a SUBMODEL call.

They may, however, undertake the same role as a model parameter.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-18

The variables tau, count, run_no, and pass are procedural variables in the following:

PACKAGE data_store;

REAL:tau,count/0/;

INTEGER: run_no;

....

END data_store;

....

SUBMODEL ANYTHING;

INTEGER: count;

....

DYNAMIC

 X':= -X/tau;

....

COMMUNICATION

 if T = TSTART then count:=0; end_if;

 count:= count+1;

....

-- experiment

LOGICAL:pass/false/;

 run_no:=1;

....

4.5.5 CONSTANTS

There are two classes of constant - those explicitly declared as such with the keyword
CONSTANT preceding the type declaration, and those which are treated as constant within
the regime of a subprogram. When a variable of any classification is passed as an input
argument to a modelling subprogram, then within that subprogram the variable is regarded as
a constant. Attempts to modify the constant will result in an ESL error message.

Note that ESL always passes MODEL and SEGMENT input arguments by "value", and
therefore they cannot be changed by the called subprogram.

The following are explicitly declared CONSTANTs:

CONSTANT REAL: pi/3.14159265/;

CONSTANT INTEGER: maxcount/100/;

CONSTANT LOGICAL: fixed_flag/true/;

CONSTANT CHARACTER: logo(15)/"iSiM_SIMULATION"/;

The value must be included with the declaration.

The following shows "constant" arguments, the constant property being inherited through the
input argument list:

MODEL ex_model(REAL:alpha:=REAL:input1;INTEGER:max_number);

In this example, the actual arguments corresponding to input1 and max_number, are
declared in the experiment as procedural variables. They become inherited constants inside
the MODEL which means that their values may not be changed by code in the subprogram.

ESL also provides the option of explicitly declaring an input argument to a subprogram as a
CONSTANT. This is done for reasons of run time efficiency and means that only the initial call
to the subprogram will contain the argument, for example:

SUBMODEL ex_model(REAL:alpha:=CONSTANT REAL:input1);

In this example, input1 is explicitly declared as a constant in the SUBMODEL.

4.5.6 ESL PARAMETERS

An ESL PARAMETER is a special type of CONSTANT. A scalar, non-array, identifier
declared as a CONSTANT does not have data storage associated with it, its value is used
literally. An ESL PARAMETER, however, has associated data storage allocated for its value.
This difference means that an ESL PARAMETER has the possibility of its value being
changed during a simulation execution. This characteristic is exploited by externally allowing
ESL PARAMETERs to be changed, at the start of a simulation execution, or during a

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-19

simulation run. That is, from a simulation driver file, or from the INTERACT service, see ESL
Run Control.

Note that an ESL PARAMETER declared in a SUBMODEL uses the same data storage in all
invocations of the SUBMODEL, unlike other locally declared variables which have separate
data storage associated with each invocation.

Also note that for array and character identifiers CONSTANT and ESL PARAMETER
declarations are interpreted as equivalent.

ESL PARAMETERs must be given a values in their declaration, and cannot be modified from
within the user program. The following are ESL PARAMETERs:

PARAMETER REAL: w/3.14159265/;

PARAMETER INTEGER: maxcount/100/;

PARAMETER LOGICAL: fixed_flag/true/;

PARAMETER CHARACTER: logo(15)/"iSiM_SIMULATION"/;

4.6 The Simulation Process
This section describes how ESL runs the simulation, the sequence of events when a call to a
MODEL is made, and introduces advanced features such as remote distributed operation.

4.6.1 The model functions

The MODEL called from an Experiment, or a SEGMENT called from a MODEL, conforms to a
Client-Server concept, as in the figure below.

Client-Server concept

In order for a MODEL to provide the required service, it has to perform a number of specific
tasks. The user specified regions, INITIAL, DYNAMIC etc, give an indication of these tasks. In
addition to the explicit user regions, ESL generates the following implicit regions for a MODEL
and SEGMENT (but not SUBMODEL) to complete the functionality of the module. That is:

• Pre-initial region which performs internal house-keeping operations and then invokes
the Get input region.

• Get input region accepts a command from the calling subprogram, and if required
also input arguments. For a MODEL it is only invoked after the Pre-initial region, but
for a SEGMENT it is used each frame, or communication interval.

• Pre-dynamic region which is where calls to SUBMODEL initialisation are placed, and
this region is executed after the INITIAL region.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-20

• When region where the trigger conditions of WHEN statements are checked, and if
necessary the body of the WHEN executed. This region also calls all SUBMODELs
invoked by this subprogram to perform their When, Step and Communication
functions. Note this region is normally invoked as part of the function to execute the
STEP region code.

• Return output where the output arguments are returned to the calling subprogram.
For a MODEL this region is only invoked at the end of a simulation run, but for a
SEGMENT it is used after each frame, or communication interval.

• Segment advance where any MODEL calls to a SEGMENT are placed to pass input
arguments to the SEGMENT, and request that it proceeds with the solution of the
next frame, or communication interval. Note that SEGMENT calls from the
COMMUNICATION region have the basic task of accepting the outputs from the
SEGMENT, and if such a call is not made (due to IF condition) then the
corresponding Segment advance call is suppressed.

4.6.2 Sorting modelling code

Modelling code statements represent parallel real-life elementary parts of a system being
simulated. As such they are active simultaneously, in parallel. Conventional computers
execute instructions in strict sequence, and at first sight are inappropriate for performing
simulation. The solution adopted is to "sort" the model code into an executable order, suitable
for the sequential computer, which also satisfies the simulation requirements of representing
parallel elements. By using knowledge of the class of variables in modelling code statements,
in particular the memory variables, ESL is able to sort statements into an appropriate
executable order.

Consider the modelling code statement:

x':= -x/tau;

here x', which is used by the integration to predict the value of state x, depends on x to
compute its value. A state is, however, a memory variable, its value depends on the past and
not on current conditions. That is, its value is known at the start of the dynamic region.

The following example is illegal:

z:= -z * C + input;

here the value of z on the right-hand side is unknown, and ESL would indicate an error. The
concept of a modelling code statement is to express an output in terms of inputs. The solution
here is to follow that concept, and treat z strictly as an output, that is:

z:= input/(1 + C);

The next example also gives rise to an error known as an "algebraic loop":

a:= 2 * b;

b:= a + input;

here there is no executable order that satisfies the simulation requirement, a cannot be
computed until b is available, and b cannot be computed until a is available. This problem is
solved by again re-arranging the basic information.

b:= -input;

a:= -2 * input; or a:= 2 * b;

in this case the equations had to be solved "by-hand" in order to express them in form
suitable for ESL's sorting algorithm. Fortunately properly modelled real-life systems can
always be expressed in "sortable" modelling code statements. In some cases preparatory
work (solving simultaneous equations) is necessary to produce an acceptable model. Tricks
may be used to pseudo-solve such equations, for example, expressing the b statement as:

b':= (a + input - b)/0.01;

This solves the problem by making b a state variable, a memory variable, defined in terms of
a differential equation. This certainly solves the sorting problem, at the expense of introducing
an additional differential equation, and accepting the phase-error in b due to the 0.01 time-

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-21

constant. While this technique may be suitable in certain circumstances, ESL has resisted the
temptation to automatically introduce such "fudges". It places the onus on the user to properly
model the real system.

The SUBMODEL introduces extra complexity to the ESL compiler's sorting algorithm.
Consider the following example:

SUBMODEL PROBLEM(REAL: OUT := REAL:IN);

REAL:Y/0.0/;

DYNAMIC

 Y':= (IN-Y)/0.001;

 OUT:= Y * 2;

END PROBLEM;

MODEL xxxx;

REAL: OUTPUT,INPUT,x;

....

DYNAMIC

 x:=;

 INPUT:= x - OUTPUT;

 OUTPUT:=PROBLEM(INPUT);

....

Examination reveals that the SUBMODEL output is an algebraic variable, and that there is an
apparent "algebraic loop" error (see last two statements of example). However ESL treats
each submodel as a multiple entry routine, each entry performing a specific task. The above
submodel call is actually broken into three separate calls, and expressed in pseudo ESL form
the model code becomes:

INITIAL

 OUTPUT:= PROBLEM(INPUT);

 -- neither OUTPUT or INPUT were used/changed

DYNAMIC

 x:=;

 OUTPUT:= E1$PROBLEM();

 INPUT := x - OUTPUT;

 E2$PROBLEM(INPUT);

The first call to the submodel performs the initialisation, and in this case it may be forced into
the model INITIAL region. Note that INPUT is not used in the submodel INITIAL region, so
does not require a value at this point, and the OUTPUT is not set by the SUBMODEL INITIAL
region.

The next submodel entry is called to return the submodel output. This is simply dependent on
submodel state variable Y, a memory variable, and hence OUTPUT, an algebraic variable,
may be computed.

The last call to a submodel entry passes the INPUT to the submodel input argument IN, so
that the derivative of the differential equation may be computed.

Breaking the submodel into three separate functional parts has solved the sorting problem.

This approach is used in all cases to provide a comprehensive modelling code sorting
algorithm. For any general SUBMODEL there will be a series of submodel entry-point
sections to perform different tasks. These sections are:

• The INITIAL region call executes the statements in the SUBMODELs initial region. If
possible ESL will force this call into the calling subprogram's INITIAL region. It can
only do this if all SUBMODEL input arguments required in the INITIAL region have
values set within the calling subprograms INITIAL region. This call uses the full set of
SUBMODEL arguments, and is executed only once at the start of a simulation run.

• Algebraic variable calls are used for each output variable of this type, and only those
inputs necessary for its evaluation are passed as arguments.

• State variable calls are used to process SUBMODEL state output arguments. The
calling subprogram allocates storage for the state, and its associated derivative. The
derivative is passed as an output argument to the SUBMODEL entry point, and the
current derivative value is calculated in the submodel and returned. The INITIAL
region call is used to return the initial value of the state.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-22

• Model parameter calls are never required, as these variables are only set/changed in
the INITIAL region, or after an integration step in a WHEN body, in the STEP or
COMMUNICATION region. The INITIAL and STEP entries are used to return values
of model parameters.

• Remainder of DYNAMIC code call involves no outputs, and is used to execute local
SUBMODEL code that does not directly influence the value of an output argument.
This also includes updating derivatives, and processing WHEN trigger conditions.

• STEP region code call is used to execute the bodies of WHEN statements, the STEP
region and the COMMUNICATION region. It also returns values for model
parameters, and has the function of calling STEP entry points for all SUBMODELs
called from the SUBMODEL being considered. It comprises three sub-sections:

o The When section which checks the WHEN trigger conditions, and, if
necessary, executes the body of the WHEN. It also calls the STEP entry
points of all SUBMODELs called by this subprogram.

o The Step section which executes the user's STEP region statements.
o The Communication section which executes the user's COMMUNICATION

region. This section is only executed at communication points, and not each
time the STEP entry point is used. Note the Step section will always be
executed prior to the Communication section.

The ESL compiler only generates SUBMODEL entry point sections that are actually required,
with the single exception that an INITIAL entry-point section is always generated. Modelling
code in all the entry-point sections is sorted into correct computational order.

In some rare cases you may want to ensure that the dynamic region statements are executed
in precisely the order in which you have presented them, e.g., for reasons of numerical
accuracy. In such cases, the automatic sorting function can be overruled by the inclusion of a
NOSORT statement in the declarations section of a model, submodel or segment.

4.6.3 Submodel data store

SUBMODELs are unique in that they represent Object Orientated Classes where each
instance, or invocation, requires separate local data storage. Furthermore the multiple-entry-
point concepts are equivalent to Object Orientated Methods.

Currently ESL adopts a "Multiple Copy Algorithm" to address these issues, by generating a
separate copy of the SUBMODEL for each invocation. As each invocation of the SUBMODEL
code is a call(s) to a separate subprogram, the local subprogram storage is permanently
associated with that invocation. This reduces the execution overhead in calling the
SUBMODEL but at the potential expense of needing additional memory for the multiple
copies. Note a separate copy is only generated if it requires local store (a number of short
submodels, for example, the library SUBMODEL INTEG, do not require such store).

4.6.4 Initialisation sequence

At the start of a simulation run, prior to actually starting the simulation process, a MODEL is
called to execute an initialisation sequence. This comprises executing the following code
regions:

• Pre-initial, where internal initialisation is performed and dynamic working storage
allocated.

• INITIAL code.

• Pre-dynamic, where called SUBMODELs may be initialised.

• DYNAMIC code.

• COMMUNICATION code.

The COMMUNICATION code may call SEGMENTs for their initialisation. These initial calls to
SEGMENTs, are different from subsequent calls in that the input arguments are passed to the
SEGMENT and the output arguments returned. Subsequently the COMMUNICATION region
SEGMENT calls only receive the output arguments which result from simulating the last

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-23

frame, or communication interval. The input arguments are passed in the "Segment advance"
region where the SEGMENT is instructed to advance its solution (concurrently with the
MODEL simulation if executed by a distributed process).

The above initialisation process is modified if a RESTART, RESUME or SNAPSHOT restart
or continue is active, see ESL Run Control. With these special "starts" the Pre-initial, INITIAL,
and Pre-dynamic, regions are not executed. In addition, for the "continue" type processes the
COMMUNICATION region is not executed either. The rational for these special starts is that a
"restart" is like the start of an original simulation run, but with initial values determined from
some previous simulation, and the first execution of the COMMUNICATION region may
output the initial starting state. In the case of a "continue", a previous simulation run is to be
extended. As the previous run will have finished at a communication point and executed its
COMMUNICATION region, then the "continue" run will first complete a simulation of a
communication interval before executing the COMMUNICATION region.

Execution sequence over communication interval

The manner in which the experiment interacts with the MODEL is illustrated in the figure
above. Here one communication interval is considered, and the first operation is to pass input
data to any SEGMENTs, and request they compute their next communication interval. For
REMOTE SEGMENTS this process starts while the MODEL is executing its communication
interval, otherwise the SEGMENT completes its simulation before the MODEL starts its
process. The figure Below shows the sequencing of MODEL and SEGMENT.

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-24

Model-Segment sequence

The ESL run-time control (SIMEX) is invoked to simulate the MODEL for the next
communication interval. The main activity is the simulation solution (integration), where the
DYNAMIC region is executed several times in order for the integration to predict a solution at
the end of its step. If a communication point has not been achieved, the integration proceeds
for another step. When a communication interval has been simulated SIMEX invokes the
MODEL COMMUNICATION region, which amongst other functions accepts outputs from any
SEGMENTs called.

At this point control is returned to the experiment, where the process is repeated for the next
communication interval, or if the simulation run has finished then the experiment accepts the
output argument results from the model.

4.6.5 COMMUNICATION code

The COMMUNICATION region is executed at equally spaced points of simulated time during
the course of a simulation run. The time interval between executions of the
COMMUNICATION region is known as the "communication interval", and is equal to
RESERVED variable CINT. Conceptually a COMMUNICATION region is executed after the
simulation of a communication interval. At the start of a run, however, the COMMUNICATION
region is executed to allow output of the initial state of the system, prior to starting the
simulation process.

The purpose of this region is for communications, that is, to output results of the simulation,
and receive input data, in particular from parallel SEGMENT simulations. Typically this region
contains TABULATE, PREPARE and PLOT statements.

It may also be used for modelling purposes using procedural code to change model
parameters for example. The fact that the COMMUNICATION region is only executed after
exact intervals of simulated time may be used to advantage in modelling a system.

4.6.6 STEP code

For a simulation to advance by a communication interval it has to simulate (integrate) the
equations representing the system being modelled. It proceeds in discrete time-steps, or
integration steps, completing a communication interval in one or more steps. The RESERVED
variable NSTEP determines the minimum number of steps used to complete a communication
interval. That is, CINT/NSTEP is the maximum integration step specified by the user setting
CINT and NSTEP. For fixed-step integration this is the basic step-length used, but for
variable-step integration this maximum-step may be completed in several smaller steps,

Chapter 4 ESL Operation and Program Structure

ESL Simulation Software - Development Guide 4-25

automatically selected by the integration algorithm in an attempt to satisfy its error
requirements.

With any integration algorithm smaller steps may be undertaken to "hit" a discontinuity. In
these cases a step is taken to the point where a discontinuity occurs, that is some change in
the equations representing the system. Discontinuities are usually caused by an IF-clause
changing state, or a WHEN statement triggering.

The STEP region is executed at the end of each integration step, and immediately before and
after a discontinuity. A special RESERVED variable, DIS_ST, is used to indicate the reason
for each STEP region pass, that is:

• DIS_ST = 0: normal end of STEP.

• DIS_ST = 1: communication point.

• DIS_ST = 2: immediately before discontinuity.

• DIS_ST = 3: immediately after discontinuity.

The main purpose of the STEP region is to provide higher fidelity, better resolution, output
than that available using the COMMUNICATION region. Therefore a PLOT or PREPARE
statement are candidates for this region. Note, however, that results are not produced at
equally spaced intervals, as would be the case for output in the COMMUNICATION region. It
is advised that this region is not used for purposes other than graphical output.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-1

CHAPTER 5

5 Modelling Code
This section presents ESL modelling consideration in some detail by discussing: differential
equations; integration processes; discontinuities; and partial differential equations.

Contents:

• Differential Equation

• Integration Methods

• Discontinuities

• Partial Differential Equations

5.1 Differential Equations
A principal feature of a Continuous System Simulation Language such as ESL is the ability to
simulate systems represented by differential equations. ESL is designed to allow the user to
express differential equations in three basic forms:

• Prime notation

• Integral notation

• Transfer function notation using the Laplace operator

Any order, or degree, of differential equation may be handled which may be linear or non-
linear, homogeneous or non-homogeneous.

To illustrate the different forms permitted to represent a differential equation, we take the
following second-order equation as a basic example:

𝑑2𝑦

𝑑𝑡2
+ 2𝜁𝜔

𝑑𝑦

𝑑𝑡
+ 𝜔2𝑦 = 𝑥

This is used to represent the dynamic, transient, behaviour of a system where:

x is the input

y is the output

t represents time

ζ is a constant representing the damping ratio

ω is a constant representing the undamped natural frequency

5.1.1 Prime notation

ESL prime notation involves only a substitution of the derivative terms by y' and y'' and re-
ordering to give:

𝑦′′ = −2𝜁𝜔𝑦′ − 𝜔2𝑦 + 𝑥

This is almost the format required by ESL; the final representation is:

y'' := -2*Z*W*y' - W**2*y + x;

The assignment symbol, ":=", has replaced the equals sign, explicit operators have been
added, and Z and W have replaced the non-ESL characters. Note that this results in "state"
variables y and y' (see Variables - Scope, Type and Usage), both of which must be given
initial values for the start of the simulation run, at T = TSTART.

Use of the prime notation is also permitted when using matrices, and systems of differential
equations in "state-space" form can be easily represented:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-2

X' := A*X + B*u

where A and B are matrices of two dimensions, and X and u are vectors.

5.1.2 Integral notation

The second approach is to use the integrator function (ESL library submodel INTEG)
statement. Here it is necessary to reduce the second-order differential equation to two first-
order equations. The first step is to rearrange the equation with the highest derivative on the
left-hand-side, that is:

𝑑2𝑦

𝑑𝑡2
= −2𝜁𝜔

𝑑𝑦

𝑑𝑡
− 𝜔2𝑦 + 𝑥

Then let

𝑦𝑑 =
𝑑𝑦

𝑑𝑡

So

𝑑(𝑦𝑑)

𝑑𝑡
=

𝑑2𝑦

𝑑𝑡2

Substitution gives two first order equations in y and yd:

𝑑(𝑦𝑑)

𝑑𝑡
= −2𝜁𝜔𝑦𝑑 − 𝜔2𝑦 + 𝑥

and

𝑑𝑦

𝑑𝑡
= 𝑦𝑑

which is equivalent to:

𝑦𝑑 = ∫(−2𝜁𝜔𝑦𝑑 − 𝜔2𝑦 + 𝑥)𝑑𝑡

and

𝑦 = ∫(𝑦𝑑)𝑑𝑡Now the equations may be expressed in terms of ESL style integration:

yd := INTEG (yd0, -2*Z*W*yd - W**2*y + X);

y := INTEG (y0, yd);

Again explicit operators have been introduced, and the ESL character identifiers substituted
for Greek characters. The INTEG function is an ESL library SUBMODEL, and should be
introduced with an INCLUDE statement. The first arguments (yd0 and y0) are the initial
values (at T = TSTART) of the corresponding "state variables", and they must be set to an
initial value prior to the calls. The second argument is the derivative (of yd and y).

5.1.3 Submodel representation

The second-order differential equation, used as our example, frequently appears in many
problems. An ESL library submodel CMPXPL is provided for its solution:

y := CMPXPL(y0,yd0,Z,W,X);

The initial conditions (y0 and yd0) are passed to the submodel where the states are defined
and initialised. The variable y is classed as an "inherited state", as it inherits the state property
from the submodel.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-3

5.1.4 Laplace transform notation

Laplace transfer functions are often used to specify system elements. It is necessary to
convert the transfer function into differential equations, or use a submodel which represents
the appropriate function, or to use the ESL TRANSFER operator which automatically
performs the conversion. We shall first consider conversion to differential equations before
presenting the ESL TRANSFER operation.

Using our sample equation, an equivalent transfer function would be:

𝑌

𝑋
=

1

𝑠2 + 2𝜁𝜔𝑠 + 𝜔2

This can be converted to differential equation form by re-arranging to obtain the highest
power of the Laplace operator, multiplied by y, on the left-hand-side:

𝑠2𝑌 = −2𝜁𝜔𝑠𝑌 − 𝜔2𝑌 + 𝑋

Now, replace (s2Y) by y'' and (sY) by y', add explicit operators, and substitute conventional
characters to obtain the prime notation equivalent:

y'' := -2*Z*W*y' - w**2*y + X;

Not all functions convert so easily, and sometimes an intermediate stage is required. Take the
transfer function for a phase-advance element:

𝑌

𝑋
=

𝑠 + 𝑎

𝑠 + 𝑏

In this case, re-arrange as:

𝑌 = (𝑠 + 𝑎)𝑌𝑎

where Ya is an auxiliary variable defined by:

𝑌𝑎 =
1

(𝑠 + 𝑏)
𝑋

Converting this last equation to differential form gives:

ya' := -b*ya + x;

Finally y becomes:

y := ya' + a*ya;

Two equations are required in this case. Note that ya is a "state variable" but y is classified as
an "algebraic variable", as its value depends on the current input x.

The TRANSFER operator

The TRANSFER function statement is a modelling code statement which allows transfer
functions to be expressed in a natural form, eliminating the need to derive corresponding
differential equations:

Y := TRANSFER (.... transfer function ...) * X;

where Y is the output variable and X the input variable of the transfer function. The input to
the transfer function may be any arithmetic expression of type real or integer, for example:

Y := TRANSFER (.... transfer function ...) *3*(X + 2);

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-4

The following shows typical transfer functions and their ESL form:

Transfer Function ESL Representation

𝐾

𝑠
 K/s

10.0

𝑠2
 10.0/s**2

(𝑠 + 𝑎)

(2𝑠 + 𝑏)
 (s + a)/(2*s + b)

𝑔𝑎𝑖𝑛(2𝑠2 + 0.5𝑠 + 6)

𝑠(𝑠 + 𝑎)(𝑏𝑠2 + 𝑐𝑠 + 𝑑)

gain(2*s**2 + 0.5*s + 6)/

s(s + a)(b*s**2 + c*s + d)

(1 + 0.1𝑠)(1 + 0.2𝑠)

𝑠2(𝑠 + 𝑎)(𝑏𝑠2 + 𝑐𝑠 + 𝑑)

(1 + 0.1*s)(1 + 0.2*s)/

s**2(s + a)(b*s**2 + c*s + d)

Multiplication is implied between gain, factors (for example, (s+a)) and origin poles (for
example, sn), however, the multiplying operator "*" must be used between coefficients and the
Laplacian operator "s". Similarly the exponential operator "**" must be used to indicate
powers of "s". The gain and any coefficient may be preceded with a unary - or +.

The gain and Laplacian coefficients may be real or integer numbers, constants or variables,
but not general expressions. This means that complex coefficients of "s" have to be
calculated in separate statements, and their results incorporated into the Transfer Function,
as shown below.

There is no limit to the number of factors that may appear in a transfer function numerator or
denominator, or the order of numerator or denominator, provided that the order of the
numerator is less than, or equal to, that of the denominator.

The transfer function of the last section:

𝑌

𝑋
=

1

𝑠2 + 2𝜁𝜔𝑠 + 𝜔2

may be expressed, using the TRANSFER statement:

d := 2*Z*W;

W2:= W*W;

y := TRANSFER(1/(S**2 + d*S + W2))*x;

This assumes initial conditions of zero, or by:

d := 2*Z*W;

W2:= W*W;

y := TRANSFER(1/(S**2 + d*S + W2),y0,yd0)*x;

Here the initial condition y0 and yd0 are explicitly given. Note the need to use single variables
(or constants or numbers) for the Laplacian coefficients. The initial conditions may in general
be real or integer arithmetic expressions.

Let us examine the TRANSFER operation in more detail. Consider a function of the form:

𝑌

𝑋
(𝑠) =

𝐾(𝑇1𝑠 + 1)

𝑠2(𝑠2 + 2.5𝑠 + 23.0)

which could be written for ESL as:

Y := TRANSFER(K(T1*S + 1)/S**2(S**2 + 2.5*S + 23))*x;

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-5

The compiler checks that the overall order of the numerator is less than, or equal to, that of
the denominator, and generates the appropriate differential equations with all state variables
initialised to zero.

In certain cases it may be necessary to initialise the state variables of the element described
by the transfer function to non-zero values. This may be achieved by including some or all of
the state initial conditions, starting with the primary state, in a list following the definition of the
transfer function. The states not defined will be initialised to zero. Consider for example:

y := TRANSFER(1.0/(S**2 + a*S + b), 0.1)*x;

In this case the state equation is:

𝑧′′ = −𝑎′𝑧 − 𝑏𝑧 + 𝑥

with initial conditions:

𝑧(0) = 0.1

𝑧′(0) = 0.0

The initial value of z' is set to zero by default, since only one initial condition appears in the
TRANSFER statement. In this example the resulting output is:

𝑦 = 𝑧

The initial value of y is z(0) (or 0.1).

Consider a second statement:

y := TRANSFER(K(S + 1)/(S**2 + a*S + b), 0.1, 0.2)*x;

Here the state equation is the same:

𝑧′′ = −𝑎′𝑧 − 𝑏𝑧 + 𝑥

but with initial conditions:

𝑧(0) = 0.1

𝑧′(0) = 0.2

The initial conditions refer to the state equation defined by the denominator of the transfer
function, and in this example the result is:

𝑦 = 𝐾(𝑧′ + 𝑧)

This makes the initial value of y = K(0.2 + 0.1).

Parameters from Laplace transforms

Laplace transforms can reveal considerable information about a system and how it should be
simulated. For example:

1

(𝑠 + 𝑎)(𝑠 + 𝑏)(𝑠𝜏 + 1)

has solution components exp(-a t), exp(-b t) and exp(-t/τ), that is time-constants 1/a, 1/b and
τ. The largest time-constant gives an indication of the time taken for the system to reach a
steady-state, for example, four times the largest time-constant should suggest a suitable
duration for the simulation run. The shortest time-constant gives an indication of the fastest
transient, and suggests a suitable communication interval, and upper limit on the integration-
step. The ratio of largest time-constant to the smallest indicates whether a system is stiff
(wide range of time-constants), in which case a special integration process may be required
(see discussion of integration below).

In cases where the time-constants are not so easily separated, for example:

1

𝑠2 + 2𝜁𝜔𝑠 + 𝜔2

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-6

The classical solutions to this problem can be helpful, that is:

𝑦 = 𝑒𝑥𝑝(−2𝜁𝜔𝑡)(𝐴 𝑐𝑜𝑠 𝜔𝑡 + 𝐵 𝑠𝑖𝑛 𝜔𝑡) +
𝑥

𝜔2

for 0 ≤ 𝜁 < 1, that is, oscillatory

𝑦 = 𝑒𝑥𝑝(−2𝜁𝜔𝑡)(𝐴 + 𝐵𝑡) +
𝑥

𝜔2

for 𝜁 = 1, that is, critically damped

𝑦 = 𝑒𝑥𝑝(−2𝜁𝜔𝑡)(𝐴 𝑒𝑥𝑝(𝑘𝑡) + 𝐵 𝑒𝑥𝑝(−𝑘𝑡)) +
𝑥

𝜔2

𝑘 = 𝜔𝜁√1 −
1

𝜁2

for 𝜁 > 1, that is, over damped where

y is unstable when 𝜁 < 0.

This analysis can sometimes be used on non linear equations, consider the Van der Pol
equation (Bench3.esl) by equating:

𝑣 = −𝑘(1 − 𝑥2)

Note how this equation changes through all the above states - even the unstable states - as x
changes.

5.2 Integration Methods
This section explains some of the basic principles of numerical integration methods, the
approaches taken by ESL and some of the considerations that the user needs to take into
account when developing simulations.

5.2.1 Basis of numerical integration

The basis of numerical integration is the Taylor series, which is an infinite series and gives the
true solution of a differential equation, provided there are no discontinuities ("step" changes in
y or any of its derivatives). For a single differential equation:

𝑦′ = 𝑓(𝑡, 𝑦)

The Taylor series is:

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ𝑦′(𝑡) +
ℎ2

2!
𝑦′′(𝑡) +

ℎ3

3!
𝑦′′′(𝑡) + ⋯

where y(t) is the value of y at time t, and y'(t), y''(t)... are the first derivative, second derivative
etc, at time t. The infinite series gives y(t + h) the value of y at time t + h. Fortunately the
coefficients of higher-order derivatives get progressively smaller, and a small number of terms
may be used to compute the solution to sufficient accuracy. All integration algorithms take
advantage of this fact, and use a small number of terms in their solution computation. The
number of derivative terms used indicates the "order" of the integration method. That is, a
fourth-order method uses the first four derivative terms in the Taylor series and assumes that
higher order terms have negligible effect.

For numerical integration the h term is the integration-step size. This means that following an
integration-step, h is added to time t, and the new value of y (that is, y(t+h)) is provided. The
end of each step marks the initial point, t, for the next step and in this way the entire
integration over a period from, say t = 0, to some final value may be calculated. In ESL t is the

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-7

RESERVED variable T which begins the simulation at initial time TSTART (not necessarily
zero) and finishes at T = TFIN.

The difference between the true Taylor solution, and that given by using a finite number of
terms is known as "truncation error" (error cause by truncating the Taylor series). The choice
of step h determines whether the truncation error is acceptably small, and whether the
truncated series provides an acceptable solution.

A smaller step reduces the truncation error but at the computational expense of having to
undertake more steps to complete a simulation run. A larger step increases the truncation
error but completes a simulation run with fewer steps.

In general higher-order methods are computationally more efficient as they can complete a
simulation run to a given accuracy with far less computation than a lower-order method.
There are, however, exceptions to this rule. For example, if the step-length is constrained to a
small value by the specification of a small integration-step (CINT/NSTEP), the lower-order
method can give acceptable answers for less computation.

The maximum integration-step h is determined by the user to be:

h := CINT/NSTEP

For fixed-step integration algorithms this is the basic step used, but for variable-step
algorithms this maximum step may be computed in a series of smaller steps.

With either type of integration discontinuities cause shorter steps to be undertaken to "hit" the
discontinuity. Discontinuities are described in detail later in this section.

Fixed-step integration

For fixed-step integration the basic integration-step of (CINT/NSTEP) is used, and it is the
user's responsibility to select a suitable values to give results of sufficient accuracy. The
traditional pragmatic, method of selecting the integration-step is to undertake a number of
simulation runs with the step being halved after each run. When step halving does not
appreciably change the results, the last step used is regarded as acceptable.

Variable-step integration

For a variable-step integration algorithm the user specified integration-step (CINT/NSTEP) is
regarded as the maximum integration-step to be used. This maximum step may be computed
in a series of smaller steps, as these methods are designed to adjust the integration-step to
produce a solution within specified truncation error tolerances, and so obtain an efficient
solution. Furthermore, as an integration proceeds the ideal step-length may vary, for example,
as transients decay, and the variable-step method attempts to maintain an optimal step-
length.

The default ESL integration algorithm is a 4/5 order, 6 stage, variable-step pseudo-iterative
method due to Sarafyan. The 4/5 order means it computes two solutions - one of fourth-order
and a second solution of fifth-order. The difference between the two solutions is used as an
estimate of the truncation error in a given step. The error estimate is used to control the size
of the step-length. For example, if the error estimate is large compared with the specified
error tolerance the step will be rejected, and a repeat attempt will be made with a small step.
On the other hand a small error estimate will allow the step to be accepted, and may suggest
an increased step-length for the next step.

The "stages" of a method indicate the number of derivative calculations, executions of the
DYNAMIC region, which are required at interim points before a step is computed. In a
successful step the Sarafyan method will undertake six passes of the DYNAMIC region to
compute its two solutions for the end-of-step. During these passes the values of t and state
variables are exploratory values used by the integration to determine the required Taylor
series derivative terms. Therefore during the DYNAMIC region execution the values of
variables are not solutions values, and they must not be treated as solutions. Only in the
STEP and COMMUNICATION region, and the special case of a WHEN statement body, do
the variables reflect the solution given by the integration.

Specifying too small a value for the integration-step (CINT/NSTEP) may not allow variable-
step integration to take advantage of larger more efficient steps.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-8

Integration errors

There are two main sources of error in numerical integration:

Truncation Error: due to a truncated Taylor series being employed (only a small number of
derivative terms), discussed above;

Round-off Error: associated with the number of digits used to represent numbers in a
computer.

Round-off error is determined by the computer's Unity Round-off, which is the difference
between the computer's representation of real one (1.0), and the next largest real number
which may be represented. This small interval is sometimes called machine epsilon (ε), and
the interval between any positive real number (R) and the next largest representable number
is:

𝜀 × 𝑅

This quantity is an indication of the accuracy, or resolution, in the representation of R.

For IEEE single precision Floating Point Numbers (most computers support this or a very
similar standard) a value for Unity-Round-off ε, is 1.19E-7. The corresponding value for
double precision numbers is 2.22E-16.

This limited accuracy - often only seven decimal digits - can cause significant problems in
integration. If h is small, then the integration becomes:

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ × 𝐷𝑌

where 𝐷𝑌 is the calculated mean slope and ℎ × 𝐷𝑌 is small compared with y(t). The

computer addition is now unreliable due to the limited resolution and if:

ℎ × 𝐷𝑌 < 𝑦(𝑡) × 𝜀

then the result gives 𝑦(𝑡 + ℎ) set to the original 𝑦(𝑡) and the ℎ × 𝐷𝑌 component has been

lost. While in one step this error is small, the effect of many such steps can be dramatic;
variables that should change remain constant. ESL attempts to minimise round-off errors by
effectively increasing the precision and also by warning the user if a minimum step size is
taken.

Instability during integration

Integration-steps which are too large suffer an even more dramatic problem in that the
integration may become unstable, and can cause variables to exceed maximum computer
values (say 1.0E+39), and cause the program to crash. Variable-step routines don't usually
suffer from instability as the error control mechanism confines the step to a value below the
stability limit. They can, however, crash in certain cases, but fixed-step methods are always
prone to this failure if an inappropriately large step is specified. The smallest time-constant of
the system determines the stability limit. A step size approaching the value of the smallest
time-constant gives stable but oscillatory solutions, whereas a step greater than twice the
smallest time-constant gives instability. For example, in the equation:

𝑦′ =
(𝑥 − 𝑦)

𝜏

which has the transfer function:

to achieve stability, a fixed-step of ℎ < 𝜏 is required. That is the coefficient of the state

variable is the reciprocal of the time-constant and it gives an immediate guide to the
maximum step-length.

Global errors during integration

Errors which occur during an integration-step do not necessarily accumulate as the simulation
proceeds. Errors in one step may be cancelled by errors in another step. In fact when the
simulation is of a system which has been perturbed and then settles to steady-state, the error
at the end of the run tends to its smallest value. That is, the system has convergent solutions
and the effect of step errors tends to be attenuated as the simulation proceeds.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-9

The opposite effect may occur - errors are magnified as the simulation proceeds. Fortunately
this is not common and tends to occur only in systems that are physically highly unstable. The
system described by the following equation exhibits both properties:

𝑦′ = (1 − 𝑦2)

Starting from an initial condition of y > -1, the system settles to a steady state of y = 1, and the
effect of step errors are attenuated as the simulation proceeds.

With initial conditions of y = -1 the system is in a highly unstable steady-state. The smallest
error making y > -1 will cause the error to be magnified and the system will, in fact, eventually
settle to a steady-state of y = +1. On the other hand a small error making y < -1 will also be
magnified causing y to tend to minus infinity.

Clearly this example is extreme. It is a system which is highly unstable when y is close to, or
less than, minus one.

In systems which do not reach a steady-state, but are oscillatory and achieve limit cycle
operation - errors tend to build up during one half cycle, and then be cancelled during the next
half cycle. There can, however, still be an overall build-up of error as the simulation proceeds
even though the error oscillates in a cyclic fashion.

5.2.2 ESL integration algorithms

ESL provides a variety of integration methods including explicit fixed and variable-step, and
fixed and variable-step implicit algorithms for "stiff" systems. The variable-step methods are
designed to adjust the integration-step to produce a solution within specified truncation error
tolerances, and so obtain an efficient solution.

The method used is determined by the RESERVED variable ALGO which selects from the
following algorithms:

ALGO value Method

1 or RK5 fifth-order explicit, variable-step (default)

2 or RK4 fourth-order explicit, fixed-step

3 or RK2 second-order explicit, fixed-step

4 or STIFF2 second-order implicit (stiff), fixed-step

5 or GEAR1 Gear's variable-step implicit (stiff), variable-order, method

6 or GEAR2 As for GEAR1 but approximation gives greater speed

7 or ADAMS Adam's variable-step, variable-order predictor-corrector, non-stiff

8 or RK1 first-order explicit - Euler

Note: In special circumstances, ALGO may be set to 0 for no integration, when there are no
differential equations in the DYNAMIC region. This simply causes T to be advanced at each
integration step.

The order of an algorithm is the number of derivative terms of the Taylor series which are
matched, and the "stages" of the algorithm is the number of derivative calculations made at
each step.

The next section defines what is meant by "explicit" and "implicit", and then presents a
specification of ESL explicit methods. This is followed by a discussion of "stiff" systems, and a
description of implicit methods which are well suited to stiff solutions.

Explicit and implicit integration

To explain what is meant by explicit and implicit integration we need to examine the equations
used for integration. First the simplest method is examined, that is Euler (RK1). The Euler
method is a first-order method which matches the Taylor series to the first derivative term,
and is expressed as:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-10

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ℎ𝑦′(𝑡)

It simply uses the derivative, that is, gradient or slope, at the start of the step to perform a
linear extrapolation to obtain the result.

A second-order method, sometimes known as "Modified Euler", gives a second-order
solution. It matches the first two derivative terms in the Taylor series. It is a two stage method,
computing derivative values twice in order to compute an integration-step. The equation
representing its operation is:

𝑦(𝑡 + ℎ) = 𝑦(𝑡) +
ℎ

2
(𝑓(𝑡, 𝑦(𝑡)) + 𝑓(𝑡 + ℎ, 𝑦(𝑡 + ℎ)))

The final term 𝑦(𝑡 + ℎ) appears on both the left and right-hand sides of the equation. Two

approaches are possible at this point:

• Explicit solution where an approximation is used for 𝑦(𝑡 + ℎ) appearing on the

right-hand side of the equation, therefore allowing the 𝑦(𝑡 + ℎ) on the left-hand side

to be calculated "explicitly".

• Implicit solution where the equation is solved as it appears. This requires
considerable more computation, but gives an advantage in the solution of "stiff"
systems.

The explicit solution of the above equation uses the Euler solution for the 𝑦(𝑡 + ℎ) term on

the right-hand side. Expressed more formally:

𝑦(𝑡 + ℎ) = 𝑦(𝑡) +
1

2
𝑘0 +

1

2
𝑘1

where:

𝑘0 = ℎ 𝑓(𝑡, 𝑦(𝑡))

and

𝑘1 = ℎ 𝑓(𝑡 + ℎ, 𝑦(𝑡) + 𝑘0)

The implicit solution of this second-order method is given later.

Explicit ESL integration methods

ESL uses the explicit Runge-Kutta methods as the basis for both fixed and variable-step
integration. ESL offers fixed-step: first-order (RK1), second-order (RK2), fourth-order (RK4),
and variable-step fifth-order (RK5).

Each of the fixed-step methods has the form:

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + ∑ 𝛼𝑖𝑘𝑖

𝑠𝑡𝑎𝑔𝑒𝑠

𝑖=1

where:

𝑘𝑖 = 𝑓 [𝑡0 + 𝛼𝑖ℎ, 𝑦(𝑡) + ∑𝛽𝑖𝑘𝑖

𝑖−1

𝑖=0

]

Where the symbols α and β are method-dependent constants.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-11

The variable-step method (RK5) provides a fifth and a fourth-order solution, and is expressed
as:

𝑦5 = 𝑦(𝑡) + ∑𝛾𝑖𝑘𝑖

5

𝑖−1

𝑦4 = 𝑦(𝑡) + ∑𝛿𝑖𝑘𝑖

5

𝑖−1

The local truncation error is estimated by

𝑒𝑠𝑡 = |𝑦5 − 𝑦4|

The variable-step RK5 algorithm uses a fifth-order, 6 stage approach. Two solutions are
calculated, one of fifth-order, and another of fourth-order. The difference between the two
solutions is used as an estimate of the truncation error in a given step, and this error estimate
is used to control the step-length. For example, if the error estimate is large compared with
the required tolerance, the calculation will be rejected and repeated at a smaller step-length. If
the error is much smaller than the permitted tolerance however, the calculation will be
accepted and may result in a larger step size for the next step calculation.

Adams integration method

The ADAMS integration is different from the Runge-Kutta algorithms in that it is a predictor-
corrector. That is, the result is predicted and then the solution refined by a correction process.
The Adams algorithm is a specialised variable-step, variable-order method which can give
good results for non-stiff systems. It is part of the "Gear/Hindmarsh" suite of integration
algorithms.

Stiff systems

When a system has a wide range of time-constants, or eigenvalues, it is said to be "stiff".
Such systems create a dilemma for explicit integration techniques, that is:

• A long step, suitable for the differential equation associated with the longest (slowest)
time-constant, is unacceptable for the shortest (fastest) time-constant equation due to
instability of integration.

• A short step, suitable for the differential equation associated with the shortest
(fastest) time-constant, may prove too short for the longest time-constant equation as
it leads to long solution times and possibly unacceptable round-off errors.

Systems which give rise to the above conditions cannot be successfully solved using explicit
techniques. Three possibilities can be considered:

• Modify the mathematical model to eliminate stiffness. In some cases it is possible to
assume fast "states" change instantaneously, and therefore the differential equation
may be replaced by an algebraic relationship. For example, the equation:

𝑦′ =
(𝑥−𝑦)

𝜏
 could be replaced by: 𝑦 = 𝑥 so eliminating the fast transient. In other

cases, slow states may be eliminated by assuming they remain constant, or only
change according to a simple relationship. Whether the above elimination of stiffness
is reasonable depends on the objectives of the study, the nature of the system, and
the interactions within it.

• Utilise ESL SEGMENTs which allows the system model to be partitioned into two or
more parts. Different integration algorithms, and steps, may used in each partition. It
is not always practical to partition a system - ESL Segments explains how, and when,
to partition.

• Use an integration algorithm which has far better stability characteristics - a "stiff"
integration algorithm.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-12

ESL stiff integration algorithms

The fundamental difference between explicit methods and stiff methods can be illustrated by
considering the simple Modified Euler second-order integration for the differential equation:

𝑦′ = 𝑓(𝑡, 𝑦)

The Modified Euler solution is:

𝑦(𝑡 + ℎ) = 𝑦(𝑡) +
ℎ

2
(𝑓(𝑡, 𝑦(𝑡)) + 𝑓(𝑡 + ℎ, 𝑦(𝑡 + ℎ)))

Note that 𝑦(𝑡 + ℎ) appears on both the left-hand side, and also on the right-hand side where

it is embedded in the function that describes the state variable y.

Explicit Runge-Kutta methods approximate the value of 𝑦(𝑡 + ℎ) for the computation of the

right-hand-side. Implicit methods make no such compromise and attempt to solve the true
Modified Euler equation. The result is a solution with greater stability, but at the extra cost of
solving a difficult non-linear equation.

A method based on Newton's iterative process is employed to solve the equation for

𝑦(𝑡 + ℎ). The matrix of partial derivatives, known as the Jacobian Matrix, is computed

(using a perturbation technique), and then an iterative equation is used, that is:

𝑦(𝑡 + ℎ) = 𝑦(𝑡 + ℎ) − 𝐽−1 × 𝑄

where J is a matrix based on the Jacobian, and Q is a vector of errors.

Clearly this process can be expensive in terms of computing time, therefore pragmatic
judgements are made as to how often it is necessary to recompute the Jacobian. In addition,
an efficient LU (Lower-Upper) factorisation and back substitution technique is used to

compute 𝐽−1 × 𝑄 rather than perform a more costly matrix inversion followed by a multiply.

ESL algorithm STIFF2 is a fixed-step, second-order, implicit (stiff) method, which uses a
technique similar to the above. This method was originally due to Gourlay ("A note on
Trapezoidal Methods for the Solution of Initial Value Problems", American Mathematical
Society, 1971), and, provided a suitable step-length is specified, it performs very well.

Gear/Hindmarsh integration

A great deal of research and effort has been invested into the variable-step, multi-step,
variable-order implicit Gear/Hindmarsh method during the last 20 years. As the description
suggests the method is complex (58 pages of FORTRAN code compared to 6 for STIFF2).

The term multi-step means that it uses information from previous steps to compute the current
step. This also means that it has to undergo a start-up process to create a previous step
history, before the method can proceed efficiently. In other words the method is basically a
slow starter.

The ESL implementation, however, uses a special "Gear starter" method, which is actually
the default integration RK5. As well as being a good explicit method, RK5 can generate a
polynomial of third-order representing the solution over a complete step. The coefficients of
the polynomial are used by the Gear method to predict the past history. Therefore the Gear
method first uses a single integration-step using RK5 to establish its "history", and then can
efficiently proceed with its own algorithm.

After each successful step the method decides on the best step-size, and best integration
order, for the next step. Hence the description variable-step and variable order. The order can
change from first to fifth order.

The method determines its own step-length at all times up to a maximum specified value, but
it provides an interpolating polynomial so that solutions at any point within a step may be
computed.

When the method has started it can often take huge integration-steps and still achieve a
satisfactory error tolerance. These steps are often much greater than a practical

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-13

communication interval. Rather than constrain the step-length, ESL allows the method to take
very large steps, and when a large step is complete ESL uses the interpolating polynomial to
provide solutions at (CINT/NSTEP) intervals and of course at communication points.

ESL integration algorithms

The default algorithm (ALGO = 1 or RK5), is a variable-step, six stage, fifth order-explicit
algorithm due to Sarafyan. It is extremely robust and is well suited to most programs except
those that are very stiff. While this algorithm is a variable-step method it does not remove
responsibility from the user of correctly setting (CINT/NSTEP). An NSTEP of unity allows the
algorithm to use a maximum step of CINT, and if CINT is as large as possible consistent with
user's communication requirements, the integration has maximum freedom to adjust the
actual step-length to an optimum value. Such methods are not, however, foolproof, and
occasionally the user may have to select CINT or NSTEP to obtain the desired results.

The Runge-Kutta fixed-step methods (RK1, RK2, RK4, that is, ALGO=8, 2, 3) provide 1st,
2nd and 4th order solutions, and in each case the number of "stages" is equal to the order of
the method. Generally the error is determined by the step-length, and it is the users
responsibility to set (CINT/NSTEP) to values which give acceptably accurate results. Note
fixed-step algorithms are subject to "instability" if the step-length is too large (greater than
smallest time-constant).

Higher-order methods are more efficient except in cases where the step (CINT/NSTEP) is
constrained to a "small" value. In such circumstances the lower order methods may be more
efficient, and in extreme cases RK1 could prove to give acceptable accuracy and be the most
efficient choice. The trouble with this analysis is that "small" cannot be defined absolutely, as
it depends on the system being modelled. To be more specific, "small" can be related to the
shortest time-constant, largest eigenvalue, of the system.

All the explicit algorithms suffer with stiff systems - the step-length has to be reduced to avoid
instability and this can lead to excessive round-off error and very slow progress. The implicit
algorithms, STIFF2, GEAR1 and GEAR2, have far better stability characteristics, and
although they are generally slower for non-stiff systems, they come into their own in the
solution of stiff-systems.

STIFF2, (ALGO = STIFF2 or 4), is a fixed-step, second-order, implicit (stiff) algorithm due to
Gourlay which performs very well with stiff systems provided the step-length is carefully
selected.

The Gear variable-step, variable-order, implicit algorithms, (ALGO = GEAR1 or 5, and
GEAR2 or 6), are the normal standard for stiff systems. They select their own step-length and
order, and have the tendency to be slow-starters, taking very small steps initially.

These methods can take steps greater than (CINT/NSTEP) but they provide results after each
interval of (CINT/NSTEP) by interpolation. As they are required to restart following a
discontinuity these methods can be slow when there is a large number of discontinuities. Also
in a segment environment, with an effective discontinuity at each communication interval,
their potential speed may be considerably reduced. GEAR1 is the full implementation of
Gear's method while GEAR2 uses a diagonal approximation to the Jacobian Matrix. This
approximation speeds execution and provided the system being simulated has the property of
diagonal dominance, the results should be very similar to GEAR1. Note diagonal-dominance
occurs when each derivative of a state variable is mainly dependent on that state, and is
dependent on other states to a lesser extent.

Experimentation using GEAR1 and GEAR2 is a good way to determine whether the
speed/accuracy trade-off gained using GEAR2 gives an advantage.

The Adams algorithm, (ALGO = ADAMS or 7), is a variable-step, variable-order, predictor-
corrector integration for non-stiff systems. This has the same step-control and characteristic
as the Gear methods, but provided it is not constrained by restarting at discontinuities it
eventually takes large efficient steps.

A reserved variable, GE_EUL, gives greater control of the Gear integration algorithms, that is,
GEAR1 (5), GEAR2 (6), ADAMS (7). Its default value of zero (or false) causes the Gear
algorithms to use a Runge Kutta starter (the default method). Users may set GE_EUL to 1 (or

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-14

true) prior to starting the DYNAMIC region, in order to use the alternative Euler starter. In
certain simulations (often those which are highly oscillatory) the Euler starter, which initially
uses a first order algorithm, proves to be faster. The default Runge Kutta starter initially uses
a higher order algorithm, and is the recommended starter for most problems.

Integration error specification

The allowed integration error is determined by the reserved variable INTERR which is in the
range:

1.0 > 𝐼𝑁𝑇𝐸𝑅𝑅 ≥ 𝜀

where ε is the computer's "unity round-off" constant.

Different integration algorithms treat INTERR in different ways.

For RK5, the variable-step explicit integration, the value of INTERR can normally be regarded
as a relative error which is applied to each differential equation separately. That is, for the
differential equation:

𝑦′ = 𝑓(𝑦,… , 𝑡)

the basic error per integration-step (EPS) is restricted to:

𝐸𝑃𝑆1 = 𝑦 × 𝐼𝑁𝑇𝐸𝑅𝑅

This simple approach works well in most cases, but problems can occur when the change in y
per step (dy), is relatively small compared with the value of y. In these cases the error
tolerance (y * INTERR) can be larger than dy, and this may lead to partial integration
instability. The solution adopted in these cases is to reduce the allowed error tolerance to:

𝐸𝑃𝑆2 = 𝑑𝑦 × 𝐸𝑅𝑅2

that is when (𝑑𝑦 × 𝐸𝑅𝑅2) is less than (𝑦 × 𝐼𝑁𝑇𝐸𝑅𝑅).

The value of ERR2, with relation to INTERR, has been selected on the basis of experience
and experimentation as:

𝐸𝑟𝑟2 = √𝐼𝑁𝑇𝐸𝑅𝑅

The complete error specification is:

𝐸𝑆𝑃 = 𝑚𝑎𝑥 𝑜𝑓 (𝑚𝑖𝑛 𝑜𝑓 (𝐸𝑃𝑆1 𝑜𝑟 𝐸𝑃𝑆2) 𝑎𝑛𝑑 𝑦𝑚𝑎𝑥 × 10.0 × 𝜀)

Errors less than (𝑦𝑚𝑎𝑥 × 10.0 × 𝜀) are close to the limit of computer accuracy, and

represent a change of one in the least significant decimal digit in the representation of ymax
(the largest previous value of y). This error tolerance specification means that the error

tolerance is always greater than or equal to (𝑦𝑚𝑎𝑥 × 10.0 × 𝜀), and for single precision

computation this is approximately (𝑦𝑚𝑎𝑥 × 0.000001).

The value of INTERR gives a reasonable indication of the number of significant figures of
accuracy which may be expected, and yet tightens the specification to avoid parasitic
oscillation which may occur when y is large with respect to dy due to the integration being
close to instability. In common with other integration error specifications, the above method
controls the error in a single step, and cannot predict the error propagation, or global error.
Therefore even with a variable-step method the user must exercise caution, and cannot rely
absolutely on the integration error control.

The fixed-step algorithms RK1, RK2 and RK4 take no account of the error specification.
Although it is a fixed-step algorithm, the second-order stiff integration, STIFF2, uses INTERR
(as described above) to determine convergence of its iterative solution. The GEAR and
ADAMS algorithms which have different characteristics treat INTERR differently. For these
methods a normalised error estimates of all the state variables is computed to be less than
INTERR. The normalised error is defined as:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-15

√∑ (
𝑒(𝑖)

𝑦𝑚𝑎𝑥(𝑖)
)
2

𝑖=𝑛
𝑖=1

𝑛

where, e is error-estimate, n is number of differential equations, and i is equation number.

For these algorithms, ymax is the largest value of y recorded, and is given a minimum value
of unity. This has the effect of making INTERR a relative specification for state variables
which are larger than one, and an absolute specification for smaller state variables.

5.3 Discontinuities
Integration algorithms cannot integrate satisfactorily in the presence of discontinuities. A
discontinuity is an event which causes the algebraic or differential equations representing the
system to suffer a "jump" or "step" change in one or more modelling variables. Such events
are very common in real systems, that is, limits, dead-space etc.

In mathematical terms the function is "piece-wise continuous" with a discontinuity
representing an abrupt change in a state variable, or its first or higher derivative. A
discontinuity within an integration-step invalidates the Taylor series representation of the step,
and consequently any of the integration algorithms used.

Although ESL protects integration from discontinuities, it is helpful to understand the
consequences of an "unprotected" discontinuity on the integration process:

• Fixed-step explicit - causes erroneous results as the method is attempting to match
Taylor series which is invalidated by the discontinuity. Small steps, giving longer
execution times minimise, this effect.

• Variable-step explicit - the method gives inaccurate results which are reflected in the
error estimate. This causes the step mechanism to reduce the step which spans the
discontinuity to a very small value at which the effect of the discontinuity is minimal.
The final result usually has good accuracy but at the expense of excessive
computation time.

• Implicit methods - even more sensitive to discontinuities. The result is possibly an
abortion, very slow execution and/or erroneous results.

It should be noted that "step" changes, or discontinuities, that only change the second or
higher derivatives are not as severe as those in the states or first derivatives. In some cases it
may be acceptable to allow the integration routine to cope with these "mild" discontinuities.

5.3.1 ESL handling of discontinuities

ESL incorporates an integration-discontinuity control mechanism which accurately and
efficiently detects and locates discontinuities. ESL does not allow a discontinuity to occur
within an integration-step. It arranges for it to occur after the end of one step and before the
beginning of the next, that is, between steps. This would normally lead to a gross time error,
however at the end of each step a check is made to see if a discontinuity should have
occurred in the step. If this was the case the last step may be repeated with a shorter step-
length based on an interpolation of the discontinuity function (the relational expression
describing the discontinuity). The interpolation process is repeated until the step-end occurs
just after the point of discontinuity, that is, within specified error bounds. The change to a
modelling parameter may then be made, between steps, before proceeding with the
simulation of the new state of the system.

As the control mechanism does not allow any change to take effect during an integration-step,
the integration routines are protected from the effects of a discontinuity occurring in mid-step.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-16

Discontinuity detection

Discontinuities are specified by logical expressions containing relational operators in the
dynamic region, for example:

𝐴 ≤ 𝐵

The discontinuity is the point at which above expression changes from true to false, or from
false to true. The accuracy with which this discontinuity is detected is controlled by the
RESERVED variable DISERR (default value = 0.0001). This specifies an error tolerance, or
error band, relative to MAX, the maximum recorded value of A or B, and detects the
discontinuity to a tolerance of DISERR * MAX. That is:

0.0 ≤ 𝐴 − 𝐵 < 𝐷𝐼𝑆𝐸𝑅𝑅 × 𝑀𝐴𝑋

when A is becomes greater than B, and:

0.0 ≤ 𝐴 − 𝐵 < −𝐷𝐼𝑆𝐸𝑅𝑅 × 𝑀𝐴𝑋

when A becomes less than or equal to B.

As well as the DISERR check, the discontinuity is considered accurately detected if the time
(T) change between two (A-B) values, which span the error bound, is of the order of computer
precision (see mathematical definition below).

In certain difficult cases it may be appropriate for users to scale A and B to gain greater
control over the detection process. For most problems, the default value of DISERR gives a
reasonable trade-off between accuracy and speed. The normal range of DISERR is:

1.0 ≥ 𝐷𝐼𝑆𝐸𝑅𝑅 > 𝜀

Larger values give less accuracy but faster detection, while smaller values give greater
accuracy and slower execution. Note that DISERR of unity effectively allows an infinite error
bound, and ensures no interpolation integration-steps are used (see below).

The relational operation is converted into a discontinuity function θ for internal ESL use,
where:

𝜃 = 𝐴 − 𝐵

The change in range, dependent on whether θ becomes positive or negative, ensures that at

the point of detection 𝐴 ≥ 𝐵 is in the new state.

Discontinuity detection

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-17

The figure above shows a discontinuity detection sequence for the above relational operation.
Each horizontal arrow indicates an integration-step scheduled by the integration algorithm,
and additional steps to detect the discontinuity.

The sequence is:

• Step numbered (1) has been computed by the integration algorithm, integration
accuracy criteria have been satisfied.

• The discontinuity detection control, however, detects a discontinuity as θ has
changed sign. It uses linear interpolation to suggest a step-length, step (2), that will
be close to the point of discontinuity. Note that the linear interpolation "aims" for the
centre of the error band.

• Step (2) is undertaken, but again it "overshoots" the discontinuity, and a further
interpolation is used to refine the step-length, that is, step (3). This and any
subsequent interpolation use quadratic, rather than linear, interpolation based on
three values of θ which span the discontinuity.

• The result of step (3) is that θ now lies within the error-bound, and the discontinuity is
regarded as being accurately detected.

• The result of the relational operation, 𝐴 ≥ 𝐵, is now set to be true; during previous

steps 1, 2 and 3, it had been maintained false.

• The recovery step, step (4), is computed using the new result of the relational
operation. This step "aims" for the same point in time as the original step, step (1), in
which the discontinuity was first encountered.

• Step (5) is a normal step following the discontinuity process.

Note that as well as the DISERR check, the discontinuity is considered accurately detected if
the time (T) change between two θ values, which span the error bound, is of the order of
computer precision. That is:

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑎𝑏𝑠(𝑡) × 𝜀 × 10

𝑜𝑟 𝑖𝑓 𝑎𝑏𝑠(𝑡) < 𝑎𝑏𝑠(𝐶𝐼𝑁𝑇) 𝑡ℎ𝑒𝑛 𝑎𝑏𝑠(𝐶𝐼𝑁𝑇) × 𝜀 × 10

The above sequence shows the simplest of discontinuities. In practice there may be more
than one discontinuity in the original step, step (1), and ESL will correctly process each in
order of occurrence. In addition, a discontinuity often causes an immediate "consequential"
discontinuity, which results from the change introduced by the first discontinuity. Again ESL
will correctly process all these "consequential" discontinuities, without undertaking further
integration-steps. The discontinuity algorithm is also sufficiently robust to properly detect
discontinuity functions, θ, which instantaneously change sign, and at no point have a value
within the error band.

5.3.2 ESL action on discontinuity detection

The last section described the sequence of operations during discontinuity detection, and
here we describe exactly what ESL does at the point of the discontinuity. That is, at the point
following step (3) of the last section.

The sequence of events which occur immediately following discontinuity detection are:

• The STEP regions of the MODEL and SUBMODELs are executed. This allows output
of the pre-discontinuity state.

• The state of the detected discontinuity is set to the new state, and the DYNAMIC
region is executed. IF-clauses reflect the new state and may change the value
assigned. WHEN statement trigger conditions are noted. If the changes introduced by
the discontinuity have caused a "consequential" discontinuity, then the sequence
restarts at (1) above.

• If any WHEN triggers have occurred the body, or block, of the WHEN statement is
executed.

• The STEP regions of the MODEL and SUBMODELs are executed. This allows output
of the post-discontinuity state.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-18

• The DYNAMIC region is executed allowing consequences of changes in WHEN
bodies to take effect. If this causes a "consequential" discontinuity, then the sequence
restarts at (1).

Note that during execution of the STEP region indicated above the RESERVED variable
DIS_ST is first set to 2 prior to the first discontinuity state change, but for further STEP
execution it is set to 3 indicating post-discontinuity.

Using ESL's discontinuity features

ESL provides special language features to take advantage of the discontinuity mechanism,
and represent non-linear, or discontinuous components.

A basic discontinuity is specified by a relation between real variables or expressions
appearing in the DYNAMIC region of a subprogram, for example:

a > b

a >= b

a < b

a <= b

a * y >= b + z

Note that relational operations with "=", or "/=", operators and relational operations involving
integer values are not treated as basic discontinuities.

The equality and inequality operators with real quantities are unreliable operations during a
simulation process. Variables change continuously during dynamic simulation, and only at the
point of a discontinuity should "step", or "jump", changes be observed. In addition considering
the approximate nature of integration, the possibility of two quantities being exactly the same
is remote.

Integers are not continuous - their values "jump" from one value to another in steps which are
multiples of one, and so relational operations with integers are not treated as basic
discontinuities. Note, however, that when integer values represent the different states, or
modes, of an element being simulated, it is appropriate to use all relational operators. In this
case the integer should be properly set in an IF-clause or a WHEN block that is set as a result
of some discontinuity.

Discontinuity relationships are only effective in DYNAMIC region modelling code statements,
where they may be used in one of three ways:

• Assigned to a logical variable.

• In an IF CLAUSE.

• In a WHEN statement "trigger" condition.

5.3.3 Logical assignment of discontinuity

The discontinuity relationship may be used in a logical assignment statement, for example:

logic1 := a > b;

logic2 := a * b >= 10.0 and c < 0.0;

where a, b and c are real variables.

IF clause

The IF-clause is part of a modelling code assignment statement, and it may only appear in the
DYNAMIC region. It acts as a two-way, or multiple-way, switch which assigns a single value
to a variable, for example:

y:= IF a > b THEN x1 ELSE x2;

y:= IF a > b THEN x1 ELSE_IF x< 0.0 THEN x2 ELSE x3;

y:= IF a > b and C >= (2*limit) THEN x1 ELSE x2;

y:= IF a > b or c > b THEN x1 ELSE x2;

The final ELSE is mandatory because an assignment must always be made to the variable.
Additional ELSE_IF clauses introduce further branches, or choices.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-19

The value given to the variable (y) corresponds to the first logical expression which is true.

Consider the example where the variable y, is "tracked" against another variable x providing
the value of x is less than the limit ul. This is represented by the ESL statement:

y := IF x >= ul THEN ul ELSE x;

Illustration of a discontinuous function

The figure above shows that with x increasing the discontinuity is detected slightly after the
limit ul, due to the error bound allowed in discontinuity detection. The y is then set to the new
value, ul.

With the value of x decreasing, the change again occurs just after the limit ul.

This small error is inconsequential for most applications, in fact not usually visible unless a
graph is highly magnified. The user should be aware of its existence, and the fact that there is
a small error in discontinuity detection.

In the above examples the logical expressions were all basic discontinuity relationships.
Consider however the example:

y := if logic and int1 = 10 then z else 0;

Here neither logic, a logical variable, nor the integer relational operation, "int1 = 10", are basic
discontinuity relationships. In these cases ESL converts the complete logical expression into
a discontinuity relationship, which is equivalent to the following pseudo-ESL code:

--"real_temp" is REAL set to 1.0 if local expression true else 0.0

real_temp := logic and int1 = 10;

y := if real_temp > 0.0 then z else 0;

Note that the real_temp assignment is valid in ESL, and has the action indicated.

With logic and int1 being simulation variables, for example, simulation parameters, they
should change value at the detection of a discontinuity. This means that the basic
discontinuity "real_temp > 0.0" is always a consequential discontinuity, only changing state
immediately following another discontinuity change.

WHEN statement

The WHEN statement, or block, is a modelling code statement which may only appear in the
DYNAMIC region. Its operation is fundamentally different from the IF-clause. The IF-clause is
active on each execution of the DYNAMIC region and causes an assignment to be made. The
WHEN body, however, is only executed at the instant when its logical expression become
true, only when it changes from false to true. Consider:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-20

WHEN x >= ul THEN

 print "x >= ul has changed from FALSE to TRUE at time= ", T;

 LIMIT:= true;

END_WHEN;

The body of the WHEN statement is procedural, non-modelling code, which is only executed
at the instant when the logical expression, "x >= ul", changes from false to true. The print
statement accurately reflects the situation. Note in this example that if LIMIT is used
elsewhere in the DYNAMIC region, then it is a "simulation parameter" and must have been
initialised in the INITIAL region, or in its declaration. The above, however, will only set LIMIT
when x becomes greater than or equal to ul, and LIMIT is never reset. The following
addresses this situation:

WHEN x >= ul THEN

 LIMIT:= true;

WHEN x < ul THEN

 LIMIT:= false;

END_WHEN;

Two WHEN statements have been concatenated, note that the END_WHEN after the first
may be (optionally) omitted, and has been omitted in this example. The concatenated
statements behave as two separate WHEN statements. As their "trigger" logical expressions,
or conditions, are exact opposites then the variable LIMIT accurate reflects whether x is
"limited" or not, and it may be safely used in the DYNAMIC region code. To complete this
illustration it is necessary to properly initialise LIMIT, for example:

INITIAL

 LIMIT:= x >= ul;

Variables initialised in the INITIAL region and only modified in a WHEN block have the class
"Memory variables", see ESL Operation and Program Structure. This means that their values
depend on previous rather than current values for each pass made. Thus in the above
example, LIMIT is a memory variable and can break a possible implicit loop (un-sortable
statements) which the simple IF-clause cannot.

If necessary the WHEN logical expression, or "trigger condition", is converted into a basic
discontinuity relationship, in the same manner as that used for the IF-clause logical
expression.

The execution of WHEN statement bodies is always undertaken at discontinuity detection,
never during an integration-step, and note that the order of statements in the WHEN body is
never changed. Furthermore, in cases where more than one WHEN statement triggers at the
same instant, the bodies of these statements are executed in the order in which they are
presented in the program.

Handling discontinuity problems

Discontinuities need to be handled with great care. If they are not addressed correctly they
can result in inaccurate, inefficient execution, or programs that may "lock-up".

relation complement

a >= b a < b

a > b a <= b

a < b a >= b

a <= b a > b

The basic discontinuity relationships need careful selection. Ensure that all cases are
considered. For example, a < b and a > b leaves the case of a = b unexamined. The table
above provides a quick check of valid relations, and their opposites. Always determine what
the "equal" condition means, and be consistent in all logical expressions which relate to that
decision.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-21

A common error occurs with systems that have two states. The transition from state 1 to state
2 may be correctly programmed. However, when the program is run, it is found that the
system remains in state 2 rather than switching back to state 1. In other words, the logic does
not permit a reverse transition from state 2 to state 1.

As an example, consider the following incorrect statement:

WHEN x >= ul or x < ul THEN

 <statements>

END_WHEN;

This statement is incorrect because the condition is always true, it never has the opportunity
to change from false to true, and can never trigger the WHEN body. A correct expression
would be:

WHEN x >= ul THEN

 <statements>

WHEN x < ul THEN

 <statements>

END_WHEN;

As described above, variables set in WHEN blocks are Memory variables and as such must
be initialised if used outside of the WHEN body. The INITIAL region should always be used to
correctly establish the initial state of the system whenever WHEN statements appear;
otherwise certain WHEN blocks may never trigger.

Discontinuities cause variables to suffer "step" or "jump" changes, and when such variables
are inputs to other discontinuity functions special care must be exercised. For example,
assume that ul1 < ul2 in the following sequence:

WHEN x >= ul1 THEN

 <statements 1>

WHEN x >= ul2 THEN

 <statements 2>

END_WHEN;

Problems may occur if the input variable x suffers a step change causing both x >= ul1 and x
>= ul2 to become true at the same instant. ESL will process statements 1 and then
statements 2. This can cause a conflict as statements 2 may modify the effects of
statement 1.

One approach is to use the fact that the bodies of WHEN blocks are always executed in the
order presented, when more than one WHEN trigger occurs at the same instant. An
alternative approach is to make the bodies of each WHEN absolutely determine the situation.
In this example, statements 1 could take into account that x >= ul2 may also have become
true at the same instant as x >= ul1 and set variables appropriately. Similarly statements 2
should account for the possibility that x >= ul1 also became true at the same time.

Do not be tempted to code:

WHEN x >= ul1 OR x >= ul2 THEN ..

in order to reduce code, as this will fail to recognise the transition from:

ul1 <= x < ul2

to

x >= ul2

That is, x >= ul1 will already be true, and if x then becomes greater than or equal to ul2, the
WHEN will not trigger (the logical expression is already true and so will not change from false
to true).

Mathematical considerations such as normalising a discontinuity relationship can avoid the
build up of errors in a simulation run. In the following example a periodic sequence of events
is being simulated, but it is poorly coded.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-22

--POOR CODE

WHEN t >= start_period + period THEN

 start_period:= t;

END_WHEN;

Time t and (start_period + Period) become larger as the run proceeds. Considering that
discontinuity detection error is specified as a proportion of the maximum value of the
operands (see previous section), then the discontinuity detection error bounds becomes
greater as the run proceeds. Therefore discontinuities occurring later in the run are detected
less accurately.

Furthermore, start_period is set to t after each period of time has elapsed, but due to
discontinuity detection error t will be slightly greater than intended. As the run proceeds these
slight errors accumulate, and the result will have a "phase-lag" compared with the intended
result. The following code corrects both these problems:

--GOOD CODE

WHEN t - start_period >= period THEN

 start_period:=start_period + period;

END_WHEN;

In this case the discontinuity relation operands never exceed the value of period and the
same detection error-band applies throughout the simulation run. The correct updating of
start_period constrains the "phase-lag" error to a maximum equal to a single detection error.

The following sections illustrate the use of discontinuities in more realistic examples by
presenting ESL library submodels which simulate discontinuous elements.

Quantizer example

The example of a quantizer shows repeated code in the body of WHEN statements to avoid
problems when the input suffers a "step" change. It also uses a normalised discontinuity
relationship.

SUBMODEL QNTZR(REAL:y := CONSTANT REAL:P; REAL:x);

-- Quantizes the input variable x (with quantization

-- interval P) so that the output is the largest value of

-- n*P < x where n is an integer. The calling sequence is

--

-- y:= QNTZR(P,x)

--

-- where:

-- P is a constant;

-- x is the input variable;

-- y is given a value such that:

-- y = i*P

-- where i is the largest integer such that, i*p <= x.

--

-- Note the input P is assumed constant throughout a run.

-- The output is a memory variable.

 REAL: xnorm;

 INITIAL

 y:= INT(x/P)*P;

 if x < 0.0 then y:= y-P; end_if;

 DYNAMIC

 xnorm:= (x-y)/P;

 when xnorm >= 1.0 then

 y:= INT(x/P)*P;

 if x < 0.0 then y:= y-P; end_if;

 when xnorm < 0.0 then

 y:= INT(x/P)*P;

 if x < 0.0 then y:= y-P; end_if;

 end_when;

--

END QNTZR;

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-23

Modulator example

The modulator example shows a potential conflict when sig is equal to unity. In this case
"(ramp >= sig) and (ramp >= 1.0)" both become true at the same instant. Here the conflict is
overcome by statements of the second WHEN overriding those of the first, that is, a new
cycle begins and Y is set true.

SUBMODEL MODULT(LOGICAL:Y := CONSTANT REAL:Td; REAL:sig;

 CONSTANT REAL:per);

-- Logical pulse width modulator which generates a logical

-- pulse train with specified period and a mark-space

-- ratio. An initial delay is permitted, and the initial

-- output may be specified as TRUE or FALSE. The calling

-- sequence is:

--

-- y:= MODULT(Td,sig,per)

--

-- where:

-- Td is the time at which the pulse train starts. If

-- Td >= 0.0, y will remain FALSE for Td seconds. If

-- Td < 0.0, pulse train will remain TRUE for

-- (-Td) seconds.

-- sig is the modulating signal in the range (0..1).

-- per is the period of the pulse train in units of T.

--

-- Note that Td and per are regarded as constant during a run.

-- The output is a memory variable.

 REAL: start,ramp;

 INITIAL

 if Td > 0.0 then

 Y:= FALSE;

 start:= TSTART+Td-per;

 else_if Td < 0.0 then

 Y:= TRUE;

 start:= TSTART+ABS(Td)-per*sig;

 else

 Y:= TRUE;

 start:= TSTART;

 end_if;

 DYNAMIC

 ramp:= (T-start)/per;

 when ramp >= sig then

 Y:= FALSE;

 when ramp >= 1.0 then

 start:= start+per;

 Y:= TRUE;

 end_when;

--

END MODULT;

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-24

Bistable example

The bistable has the task of giving precedence to certain operations. For example, reset
takes precedence over set. It achieves this result by a combination of WHEN statement
order, and explicit code in the WHEN body to determine whether an action should result.

SUBMODEL BISTBL(LOGICAL:y := CONSTANT LOGICAL:IC;

 LOGICAL:reset,set,clock,x);

-- Logical bistable storage device which stores the

-- logical data input (x) as the clock input becomes TRUE.

-- A 'set' input of TRUE causes a TRUE to be stored and

-- inhibits the normal operation. Similarly, a reset value

-- of TRUE causes a FALSE to be stored and inhibits both

-- the set operation and normal operation. The calling

-- sequence is: y:= BISTBL(IC,reset,set,clock,x) where:

-- IC is the logical initial condition;

-- reset resets the bistable to a logical FALSE output;

-- set sets the bistable to a logical TRUE output;

-- clock is normally a logical pulse train; as it becomes

-- TRUE (edge triggering), the logical input (x) is

-- stored in the bistable memory;

-- x is the logical 'data' input variable.

--

-- y is given a value such that:

-- y = FALSE, if reset is TRUE;

-- y = TRUE, if set is TRUE and reset is FALSE;

-- y = x, when clock being TRUE provided set and reset

-- are FALSE.

-- The output is a memory variable.

 INITIAL

 if reset then

 y:= FALSE;

 else_if set then

 y:= TRUE;

 else

 y:= IC;

 end_if;

 DYNAMIC

 when reset then

 y:= FALSE;

 when set and not reset then

 y:= TRUE;

 when clock then

 if not set and not reset then

 y:= x;

 end_if;

 end_when;

END BISTBL;

5.4 Partial Differential Equations
Partial differential equations are differential equations with more than one independent
variable, say time (the normal independent variable) and distance. They contain partial
derivatives of dependent variables with respect to one or more independent variables. Heat
flow, wave propagation, transmission along a line, vibrations, hydrodynamics, diffusion
processes and the like, all give rise to partial differential equations. This section briefly
describes how such distributed parameter problems may be tackled.

Two common types of partial differential equations result from heat conduction (diffusion)
processes, and from "travelling wave" phenomena. Both processes may arise in the
transmission of signals along an electrical transmission line. Once the electrical transmission
line is understood many other partial differential equation systems can be solved by simple
analogy with the transmission line. For this reason we shall now examine the transmission
line.

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-25

5.4.1 Electrical transmission line

A transmission line can be considered to be divided into a number of identical sections of
physical length δx, that is:

where: R resistance per unit length;
L inductance per unit length;
C capacitance per unit length;
G conductance (1/resistance) per unit length.

The basic equations that describe the section are (note δ means partial derivative):

𝜕𝑉

𝜕𝑥
= −𝑅𝐼 − 𝐿

𝜕𝐼

𝜕𝑡

𝜕𝐼

𝜕𝑥
= −𝐺𝑉 − 𝐶

𝜕𝑉

𝜕𝑡

If the first equation is differentiated with respect to x, and the second with respect to t, and the
resulting equations are solved for V, we obtain:

𝜕2𝑉

𝜕𝑥2
= 𝐿𝐶

𝜕2𝑉

𝜕𝑡2
+ (𝑅𝐶 + 𝐿𝐺)

𝜕𝑉

𝜕𝑡
+ 𝑅𝐺𝑉

By a similar process we also obtain:

𝜕2𝐼

𝜕𝑥2
= 𝐿𝐶

𝜕2𝐼

𝜕𝑡2
+ (𝑅𝐶 + 𝐿𝐺)

𝜕𝐼

𝜕𝑡
+ 𝑅𝐺𝑙

In certain applications, especially low frequency, the conductance (G) and inductance (L) per
unit length are small and negligible so the equations reduce to:

𝜕2𝑉

𝜕𝑥2
= 𝑅𝐶

𝜕𝑉

𝜕𝑡

𝜕2𝐼

𝜕𝑥2
= 𝑅𝐶

𝜕𝐼

𝜕𝑡

These are known as the telegraph equations, or diffusion equations with a constant of
diffusivity (alpha) of:

𝑎𝑙𝑝ℎ𝑎 =
1

𝑅𝐶

In other cases, particularly high frequency, the resistance (R) and the conductance (G) per
unit length are small and negligible, so:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-26

𝜕2𝑉

𝜕𝑥2
= 𝐿𝐶

𝜕2𝑉

𝜕𝑡2

𝜕2𝐼

𝜕𝑥2
= 𝐿𝐶

𝜕2𝐼

𝜕𝑡2

These equations are known as the "loss-less" line equations, or wave equations with a
velocity of propagation (v) of:

𝑣2 =
1

𝐿𝐶

5.4.2 Heat flow or diffusion

Let us consider the heat flow problem from basic principles to firmly establish the analogy with
the transmission line telegraph equations. Consider a section of medium with thickness δx
and A cross-section-area.

Ux is temperature, Fx heat-flow, Fxl is heat flow loss via Ce. The voltage drop across Re
represents a temperature drop.

Re is proportional to length (δx), and inversely proportional to area (A), with a constant of
proportionality (r) known as the thermal resistance (r sometimes expressed in terms of
thermal conductance k which is equal to 1/r).

Ce is a capacitor which represents the thermal capacity of the section. That is specific heat
(s) multiplied by mass, and mass is density (D) multiplied by volume (Aδx).

As δx tends to an infinitesimal value:

𝛿𝑈 = −
𝜌𝛿𝑥

𝐴
𝐹𝑥

𝜕𝑈

𝜕𝑥
= −

𝜌𝐹𝑥

𝐴

𝛿𝐹𝑋 = −𝐹𝑥𝑙

Capacitor equations give:

𝜕𝑈

𝜕𝑡
=

𝐹𝑥𝑙

𝑠𝐷𝐴𝛿𝑥
 𝑠𝑜 𝐹𝑥𝑙 = 𝑠𝐷𝐴

𝜕𝑈

𝜕𝑡
𝛿𝑥

From above two equations:

𝜕𝐹𝑥

𝜕𝑥
= −𝑠𝐷𝐴

𝜕𝑈

𝜕𝑡

Now by manipulation after differentiating:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-27

𝜕(𝜕𝑈)

𝜕𝑥𝜕𝑥
= −

𝜌

𝐴

𝜕𝐹𝑋

𝜕𝑥
= 𝜌𝑠𝐷

𝜕𝑈

𝜕𝑡

𝜕2𝑈

𝜕𝑥2
=

1

𝑎𝑙𝑝ℎ𝑎

𝜕𝑈

𝜕𝑡
 𝑤ℎ𝑒𝑟𝑒 𝑎𝑙𝑝ℎ𝑎 =

1

𝜌𝑠𝐷
=

𝑘

𝑠𝐷

This is the classic heat-flow, and by letting:

𝑎𝑙𝑝ℎ𝑎 =
1

𝑅𝐶

it can be seen that it is identical to the telegraph equation.

5.4.3 Simulating partial differential equations

The same solution equations may be found to the partial differential equation by developing:

• first-order differential equations to solve the partial differential equation using a
"central difference" method to estimate partial derivatives.

• an electrically equivalent network, and deriving differential equations directly from the
network.

Consider the heat flow problem where the medium is divided into N sections each of
thickness or length δx, and where Uj is the temperature of j th section.

(a) Central differences

We are now considering a finite element at a specific distance (x), therefore we can replace
the partial derivative of U with respect to t by its non-partial counterpart, ie:

𝑑𝑈𝑖

𝑑𝑡
= 𝑎𝑙𝑝ℎ𝑎

𝜕(𝜕𝑈𝑖)

𝜕𝑥𝜕𝑥

The second derivative is estimated by central differences, where δx is thickness or length of
media divided by N.

𝜕(𝑑𝑈𝑖)

𝜕𝑥𝜕𝑥
= (

(𝑈𝑗+1 − 𝑈𝑗)

𝛥𝑥
−

(𝑈𝑗 − 𝑈𝑗−1)

𝛥𝑥
)

1

𝛥𝑥

𝑑𝑈𝑗

𝑑𝑡
=

𝑎𝑙𝑝ℎ𝑎

𝛥𝑥2
(𝑈𝑗−1 − 2𝑈𝑗 + 𝑈𝑗+1) 𝑓𝑜𝑟 𝑗 = 1. . 𝑁

 (b) Network analysis

Consider P sections:

Current in Ui capacitor =

((𝑈𝑗−1 − 𝑈𝑗) − (𝑈𝑗 − 𝑈𝑗+1)) 𝑅𝑒⁄

= (𝑈𝑗−1 − 2𝑈𝑗 + 𝑈𝑗+1) 𝑅𝑒⁄

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-28

Capacitor equation

𝑑𝑈𝑗

𝑑𝑡
=

1
𝐶𝑒𝑅𝑒

(𝑈𝑗−1 − 2𝑈𝑗 + 𝑈𝑗+1)

𝐶𝑒 = 𝑠𝐷𝐴𝛥𝑥 𝑎𝑛𝑑 𝑅𝑒 =
𝜌𝛥𝑥
𝐴

𝐶𝑒𝑅𝑒 = 𝑠𝐷𝜌𝛥𝑥2 =
𝛥𝑥2

𝑎𝑙𝑝ℎ𝑎

𝑑𝑈𝑗

𝑑𝑡
=

𝑎𝑙𝑝ℎ𝑎

𝛥𝑥2
(𝑈𝑗−1 − 2𝑈𝑗 + 𝑈𝑗+1) 𝑓𝑜𝑟 𝑗 = 1. .𝑁

The two approaches give the same basic section equation. The electrical network approach
suggests there is some flexibility in the choice of the first and last section. That is, the first
section could start with resistance, ie:

or alternatively with a capacitor:

The choice of first/last section is usually made by selecting the simplest interface to the
system connected to the transmission line. Note whether Re/2 or Re, or Ce/2 or Ce, are used
for the first/last section is not usually critical, especially if a large number of sections are used.

Practical decisions

We now have first-order differential equations to simulate a distributed parameter system. The
question now arises as to the appropriate size of integration-step, and how many sections are
required - mathematics implies an infinite number. On the other hand practising engineers
realise that the answer should be the smallest number that gives sufficiently good results. Let
us try to establish some guidelines.

Explicit integration stability gives us some help. As we divide a line into a larger number of
sections the shortest time constant becomes even smaller, giving rise to possible instability
problems and maybe stiff systems. In the differential equation for U the coefficient of U is:

2 × 𝑎𝑙𝑝ℎ𝑎

𝛥𝑥2

which gives a time constant of:

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-29

𝛥𝑥2

2 × 𝑎𝑙𝑝ℎ𝑎

The integration-step should be less than this time constant.

Frequency analysis of a loss-less line, terminated by its characteristic impedance (√𝐿 𝐶⁄),

also gives guidance. In this example there should be no attenuation of signal, and the phase
angle should change linearly with frequency. The output from an n section model of a loss-
less line is mathematically correct, in amplitude and phase, for frequencies less than a critical
frequency ωc Beyond the cut-off frequency the amplitude of the signal is severely attenuated,
and the phase angle remains constant instead of decreasing. The critical frequency is given
by:

𝜔𝑐 =
𝑛𝑣

𝑙𝑒𝑛𝑔𝑡ℎ
=

1
𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑤𝑎𝑣𝑒 𝑡𝑜 𝑐𝑟𝑜𝑠𝑠 𝑎 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

where v is velocity of propagation, and length is the length of the line. As a guide make wc
three times the highest frequency of interest.

In the above example we have only considered one-dimensional problems. Two dimensional
heat flow problems are described by:

𝜕
2
𝑈

𝜕𝑥2
+

𝜕
2
𝑈

𝜕𝑦2
=

1
𝑎𝑙𝑝ℎ𝑎

𝜕𝑈
𝜕𝑡

where x and y indicate the dimensions of the media. The same basic approach applies with
sectionalization in two dimensions.

Surge tank heat transfer example

An idealised model of the thermal properties of the wall of a Nuclear Reactor's Surge Tank is
described by:

c specific heat, 460 J/kg/C

d density, 7850 kg/m3

k conductivity, 52 W/m/C

p resistivity (1/k) m C/W

alpha thermal diffusivity m2/s

A effective area 11.5 m2

Th thickness 0.0365 m

An ESL simulation program is to be written which determines the temperature distribution (at
11 equally spaced points) within the tank wall over a period of one minute. Initially the
complete system is at 20 degrees, and then the temperature inside the tank is assumed to

Chapter 5 Modelling Code

ESL Simulation Software - Development Guide 5-30

rise instantly to 1000 degrees. It is assumed that the outside surface of the tank wall is
maintained at 20 degrees.

Number of sections

From a stability viewpoint the reciprocal of the coefficient of Uj in differential equation is a
time-constant (Tau), and the integration-step-length should be less than Tau, ie: step < Tau
where Tau = deltax2/(2*alpha).

The sectionalisation is valid (accurate) up to a frequency breakpoint (wc), where wc = 1/(time
for wave to cross a section) wc approximately is 1/Tau, or wc = Vp/D x (Vp is propagation
velocity).

This means that transmitted frequencies up to wc are correct. If a system has higher
frequencies then more sections will be required if these high frequencies are not to be
severely attenuated.

--SURGE study

STUDY

model tank_wall;

constant real: c/460.0/,d/7850.0/,k/52.0/,A/11.5/,Th/0.0365/;

real: alpha,deltax,S;

REAL: U0,U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12;

INITIAL

 alpha:=k/(d*c);

-- 11 equally spaced points means 12 sections

 deltax:= Th/12.0;

-- set initial temperatures

 U0:= 1000.0;

 U1:= 20.0; U2:= 20.0; U3:= 20.0; U4:= 20.0;

 U5:= 20.0; U6:= 20.0; U7:= 20.0; U8:= 20.0;

 U9:= 20.0; U10:= 20.0; U11:= 20.0; U12:= 20.0;

-- For convenience, and more efficient dynamic loop use S

-- S:= alpha/deltax**2;

--

DYNAMIC

-- Use Central difference formulation

 U1':= S*(U0-2.0*U1+U2);

 U2':= S*(U1-2.0*U2+U3);

 U3':= S*(U2-2.0*U3+U4);

 U4':= S*(U3-2.0*U4+U5);

 U5':= S*(U4-2.0*U5+U6);

 U6':= S*(U5-2.0*U6+U7);

 U7':= S*(U6-2.0*U7+U8);

 U8':= S*(U7-2.0*U8+U9);

 U9':= S*(U8-2.0*U9+U10);

 U10':= S*(U9-2.0*U10+U11);

 U11':= S*(U10-2.0*U11+U12);

--

STEP

-- Lets see something happening

 PLOT t,u6,0,tfin,0,1000;

COMMUNICATION

-- Record results for post-mortem plotting

 PREPARE "HEAT",T,U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12;

--

END tank_wall;

-- EXPERIMENT

-- CINT selected so 1/3 of (deltax**2/(2*alpha))

-- This should give sufficient stability margin for RK4

 ALGO:= RK4; CINT:= 0.1;

 TSTART:= 0.0; TFIN:= 60.0;

 tank_wall;

--

END_STUDY

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-1

CHAPTER 6

6 Arrays, Matrices, Vectors and
Characters

ESL provides comprehensive support for array, matrix, vector and character variables. This
includes intrinsic matrix, vector and character operators, standard functions, and full support
for "sliced" array variables. Matrix, vector and character variables are subsets of the ESL
array, and this section presents a comprehensive discussion of all aspects of array operation.

Contents:

• Array Declarations

• Array Subscripts

• Array Slicing

• Array Operations

• Character Array Operations

6.1 Array Declarations
There is no separate declaration statement for arrays. Array attributes are declared by
following the variable name with parenthesis indicating the number and range of the
dimensions. The following are valid array declarations:

REAL: arr1(2,3), column(100);

INTEGER: arr2(2,2,2);

LOGICAL: arr3(2,3);

CHARACTER: arr4(3,3),CH;

PARAMETER INTEGER: param(3) [1, 2, 3];

CONSTANT REAL:arrcon(2,2) [1.1, 1.2, 2.1, 2.2];

The CONSTANT and PARAMETER array declaration must include an appropriate number of
data values. Unless otherwise specified the lower subscript bound for each dimension will be
one (this is the case for all the above). The following array declarations have explicitly
specified lower bounds for each dimension:

REAL:aa1(0..2,0..3);

REAL:aa2(1..3,-2..2,0..3);

The dimension lower bound must be less than, or equal to, the upper bound. This example
declares array aa1 to be a 3 row by 4 column (3 * 4) array, with the row subscript range 0 to
2, and the column subscript range 0 to 3. The declaration of aa2 is for a three dimension
array, 3 planes, 5 rows, and 4 columns.

CHARACTER arrays are treated in the same fashion, with a minor exception, shown by CH in
the above example. All CHARACTER variables are assumed to be arrays, and therefore CH
is assumed to be the array declared as CH(1..1). It cannot be subscripted or sliced (see
below), but in other respects it is treated as an array.

Array dimensions may also be specified by a CONSTANT, for example:

CONSTANT INTEGER: three/3/;

real:array1(three, three);

Expressions are not permitted in array declarations.

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-2

6.1.1 Subprogram array arguments

Arrays may be specified as formal arguments in subprogram declarations by explicit
specification of the dimension bound(s), as in this example of a MODEL declaration:

MODEL mod1(REAL: a1(10):= REAL: a2(4,5));

Here the call from the experiment could be:

REAL:array1(0..9);

REAL:array2(4,5);

....

....

mod1(array1:= array2);

The actual arguments should match the formal arguments with regard to type, number of
dimensions, and size/length of each dimension.

When declaring a SUBMODEL or PROCEDURE more flexibility is permitted. Consider a
submodel ARR_PROC called from a DYNAMIC region as follows:

REAL: outarr(2..11),inarr(10,2);

....

DYNAMIC

outarr:= ARR_PROC(inarr);

....

The declaration of the SUBMODEL could be:

SUBMODEL ARR_PROC(REAL:OUT (10):= REAL: IN(10,2));

Alternatively implicit dimension bounds may be given in the SUBMODEL, making it more
flexible, for example:

SUBMODEL ARR_PROC(REAL:OUT (*):= REAL: IN(*,*));

Here the SUBMODEL inherits the dimension lengths from the calling subprogram, and
assumes lower dimension bounds of unity. For this example, OUT(1..10) and IN(1..10,1..2)
are assumed.

In fact, for SUBMODEL and PROCEDURE declarations the array upper dimension bounds
are ignored, and are calculated from the dimension lengths of the actual array argument; that
is the dimension lengths are inherited from the declaration in the calling subprogram.

Note that if the lower dimension bound is not unity, users are advised to always use implicit
"*" dimension specifications for submodels and procedures (not models or segments).

ESL provides flexibility in allowing differences between actual and formal array arguments in
the case of SUBMODEL and PROCEDURE calls. The number of dimensions need not match,
provided no attempt is made in the called subprogram to access array elements that do not
exist. This is illustrated by:

Actual argument Formal argument Comment

A(2,3) F(*) assumes F(1..2)

 F(*,*) assumes F(1..2,1..3)

 F(*,*,*) assumes F(1..2,1..3,1..1)

In the first case, only elements of the first dimension of the actual argument are accessible,
and in the last case the third dimension is assumed to have a length of unity. Subscripting
and Slicing in the called routine must conform to the number of dimensions given in that
subprogram's array declaration.

Note that MODEL and SEGMENT declarations cannot use implicit dimension bounds, and
their actual and formal array arguments must have identical dimension lengths. This is
because of the special nature of the interface between procedural code and modelling
subprograms.

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-3

6.1.2 Vector declarations

Three element column arrays may be treated as a special form of array, or vector, which may
be used with ESL's vector cross and dot product operators (see later). The following vector
declarations are considered equivalent:

real:vector1(3,1);

real:vector2(3);

The three elements in the vector represent the "i", "j" and "k" components of the Argand
diagram below.

6.1.3 Dynamic arrays

An array may be dynamically allocated storage at run-time. This is specified by declaring a
local array with an upper dimension bound which is an integer input argument of a submodel,
for example:

SUBMODEL EXAMPLE(... := ... INTEGER: N);

REAL: ARRAY(N);

Dynamic arrays, which must not be states, are only allowed in submodels.

6.1.4 Array initialisation

Local declaration of CONSTANT or PARAMETER arrays must be given values in their
declaration, and other arrays may be given initial values in their declaration. Note that in
modelling subprograms the initialisation is undertaken at the start of each run, while for
procedure subprograms it is only performed at the start of the program. Two initialisation
options are available, the natural row by row (row major) order distinguished by the "[]"
delimiters for example:

REAL:a(3,4)[a11,a12,a13,a14,

 a21,a22,a23,a24,

 a31,a32,a33,a34];

where the a identifiers represent real numerical constants.

The alternative is to use the "/ /" delimiters which indicates the FORTRAN style, where data is
presented in column major order, that is, transposed column by column order:

REAL:a(3,4)/ a11,a21,a31,

 a12,a22,a32,

 a13,a23,a33,

 a14,a24,a34 /;

The above examples are equivalent - see the next section for further examples and a more
detailed explanation of row/column-major order.

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-4

Any mismatch between the number of elements declared and those set by the initialisation
will cause a compiler error.

CHARACTER array initialisation basically requires all elements of the array to be given a
character value; this can be achieved with one or more literal character strings, for example:

CHARACTER: C1(5)["12345"],

 C2(5)["123","45"],

 C3(2,3)["cat","sat"],

 C4(2,3)["catsat"],

 C5(2,3)["ca","t","sat"];

Here C1 and C2 are equivalent, as are C3, C4 and C5.

It is permitted to include an identifier in the array initialisation data providing that it has been
previously declared to be a CONSTANT, for example:

CONSTANT REAL:element /1.0/;

REAL:array1(2,2) [element, 0.0, 0.0, element];

Expressions are not allowed for data initialisation, but it is possible to have a multiplier to set
consecutive elements to the same value, for example:

REAL:array1(100) /2 * 4.0, 98*0.0/;

This sets all but the first two elements to zero. This option is also valid with the CONSTANT
arrays.

If a single dimension array is initialised then the dimension size may be omitted, for example:

REAL: ARR()/1.0, 2.0, 3.0/;

CHARACTER CH()/ "ABcd"/;

The above is equivalent to declaring the ARR(3) and CH(4). Furthermore the above may be
presented as:

REAL: ARR()/1, 2, 3.0/;

CHARACTER CH/ "ABcd"/;

This example illustrates that the initialisation data for a real array may be either real or
integer. CHARACTER array variables may have their brackets omitted, and in this case CH is
assumed to be declared as CH(4).

6.1.5 Printing arrays

The ESL PRINT statement for arrays is introduced at this point to clarify understanding of the
array initialisation process described in the last section, in particular row and column-major
order. A complete program is offered to illustrate array presentation:

study

 INTEGER: COL(5)[1,2,3,4,5], ROW(1,5)[1,2,3,4,5],

 MAT_R(2,3) [11,12,13,

 21,22,23],

 MAT_C(2,3) /11,21,

 12,22,

 13,23/,

 ARR(2,3,4) [111,112,113,114,

 121,122,123,124,

 131,132,133,134,

 211,212,213,214,

 221,222,223,224,

 231,232,233,234];

 PRINT "COL =",/,COL;

 PRINT "ROW =",/,ROW;

 PRINT "MAT_R=",/,MAT_R;

 PRINT "MAT_C=",/,MAT_C;

 PRINT "ARR =",/,ARR;

end_study

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-5

This results in:

 COL =

 1

 2

 3

 4

 5

 ROW =

 1 2 3 4 5

 MAT_R=

 11 12 13

 21 22 23

 MAT_C=

 11 12 13

 21 22 23

 ARR =

 111 112 113 114

 121 122 123 124

 131 132 133 134

 211 212 213 214

 221 222 223 224

 231 232 233 234

The ESL PRINT statement outputs "numerical" arrays in row-major order, that is elements are
processed in the order determined by changing the last subscript, in cyclic fashion, after each
element is processed. The other subscripts are cycled in a similar fashion but at a lower
frequency, the first subscript changing least frequently. The PRINT also "formats" the output
by inserting "new-lines" each time the last subscript is changed to its lower dimension bound.

This rather complicated description simply means that arrays are presented in their natural
mathematic order. That is:

• A column vector is presented in a vertical column.

• A row vector as a horizontal row.

• A two-dimension matrix as a series of horizontal rows.

• A three-dimension matrix as a number (size of first dimension) of two-dimension
matrices.

CHARACTER matrices, or arrays, are treated in a similar fashion, with one exception. That is
a character column, one-dimension matrix, is presented as a horizontal row. The above
example was modified to use CHARACTER arrays, that is:

study

 CHARACTER: COL(3)["col"], ROW(1,3)["row"],

 MAT_R(2,3) ["cat",

 "sat"],

 MAT_C(2,3) /"cs","aa","tt"/,

 ARR(2,3,4) ["cats",

 "sat ",

 "mats",

 "CATS",

 "SAT ",

 "MATS"];

 PRINT "**** COL <",COL,">";

 PRINT "**** ROW <",ROW,">";

 PRINT "**** MAT_R=",/,MAT_R;

 PRINT "**** MAT_C=",/,MAT_C;

 PRINT "**** ARR =",/,ARR;

end_study

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-6

This program gives the following results:

 **** COL <col>

 **** ROW <row>

 **** MAT_R=

 cat

 sat

 **** MAT_C=

 cat

 sat

 **** ARR =

 cats

 sat

 mats

 CATS

 SAT

 MATS

Note that the "column" matrix has now been presented as a row. Also that, as far as printing
is concerned, the row-major order is essential - see, for example, MAT_C the character array
presented in column-major order.ESL is designed to treat matrices in their natural, row-major,
order and this requires initialisation using the "[]" bracket convention.

6.2 Array Subscripts
Individual elements of an array may be selected by subscripting for the purpose of assigning
a value, or obtaining the value stored in the element. For example:

REAL: A1(5),A2(2,3),A3(2,3,4);

INTEGER: i,j,k;

CHARACTER: C(6)["abc de"];

....

A1(1):= 1.0;

for i:= 2 .. 5 loop

 A1(i):= A1(i-1)+1;

end_loop;

....

A2(i,j):= A3(i,j,k)**2;

C(4):= "d";

C(5):= C(6);

C(6):= "f"; -- Note C is now "abcdef"

The subscript may either be an integer number, INTEGER variable, integer expression, or
real quantity (expression) which is truncated to integer. The number of subscripts must match
the number of declared dimensions.

Subscript values outside the range of the declared lower and upper dimension bounds cause
an ESL run-time error during Interpreter execution. The Translator will not check the subscript
against the declared bounds, and the results are unpredictable. This is in keeping with the
policy of using the Interpreter to test the model before performing production runs at high
speed with the Translator.

6.3 Array Slicing
All dimensions of an array may be sliced to temporarily define a sub-array (of the full array)
which may be used in any array operation. Consider the array declaration:

REAL: a(20,20);

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-7

Slicing of 20 * 20 matrix

This will create a 20 by 20 array with subscripts 1 to 20 in each dimension. We may wish to
treat this array as four separate sub-arrays (or matrices) as shown in the figure above, two
square matrices, 12 by 12 and 8 by 8, and two rectangular matrices 8 by 12 and 12 by 8.

The dimensional slices (for example, 13..20), define a slice or section of the array which is to
be used. In general the sliced array a(i1..i2,j1..j2), where the sliced dimensions may be
replaced by general integer expressions is as shown in the figure below. Wherever a full array
may be used a sliced array may be used instead. A slice is a temporary restriction, or
modification of the original declaration.

General array slice

The following shows valid use of slices:

a(1..12,13..20):=b; where b is a 12 by 8 matrix

c:=inv(a(13..20,13..20)); where c is an 8 by 8 matrix

 set to the inverse of an

 8 by 8 array slice.

At execution, the correctness of any slice is checked, the upper slice subscript must be
greater than or equal to the lower subscript and both slice subscripts must be within the
declared dimension range.

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-8

Slice subscripts may be integer numbers, INTEGER variables, integer expressions, or real
quantities truncated to integers. The following are valid:

a(2..4, 2..4):= b(var..var+2, var-2..var);

b(var-2..var, 2..3):= c(abs(var-var2)..5, 3..4);

providing the declared dimensions agree with those implied, the sliced subscripts are in
range, and the source and destination slices do not overlap, that is they do not refer to the
same data (otherwise the results are unpredictable).

Note that slicing and subscripting are different concepts. A slice produces a sub-array, even if
it results in a single element, whereas subscripting always gives access to a single element.
The ESL compiler distinguishes between subscripting and slicing by examining the first
subscript, therefore if the first subscript is sliced a sliced array is assumed even if subsequent
subscripts are not sliced, for example:

AAA(1..2, 3, 4) is interpreted as AAA(1..2, 3..3, 4..4)

If the first subscript is not sliced, then subsequent subscripts must not be sliced; the following
is illegal:

AAA(2,3..4,4) --ILLEGAL

CHARACTER arrays may be sliced in the same manner, for example:

CHARACTER: c(14)["cat sat on mat"];

print c(5..7); -- produces "sat"

c(12..14):= "MAT";

c(1):="C"; -- subscripting not slicing

-- Note c is now "Cat sat on MAT"

6.4 Array Operations
This section considers the operations which may be performed on arrays. First the
assignment is considered, followed by operations on numerical arrays, and finally operations
specific to character arrays.

6.4.1 Array assignment

The simple assignment operator ":=" is actually quite sophisticated when used with arrays.
We have seen examples of the assignment:

A:= B;

where both arrays A and B are of the same type, have the same number of dimensions, and
the same dimension lengths. We have also seen that sliced arrays may be used:

A(i..j):= B(i..j);

provided that the slice subscripts are within the dimension range, i <= j, and the slices do not
overlap (unpredictable results occur).

ESL is actually more flexible in that A and B may be different numerical types, that is REAL or
INTEGER. ESL will truncate a real B to integer, or convert an integer B to real, as required.

Furthermore the number of dimensions do not have to match in certain circumstances, for
example, with the declaration:

REAL: col(5), row(1,5)[1.0,2.0,3.0,4.0,5.0];

we may use the assignment:

col:= row;

Here five elements are transferred. ESL has interpreted the row array as having a single
dimension with non-unity length, that is its second dimension with length of five. Prior to
undertaking the data transfer in an assignment operation, ESL will reduce the both arrays
involved to their minimal form. This basically means removing initial dimensions of length one,

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-9

and final dimensions of length one. The following table should explain the operation more
clearly:

Declared Array Minimal Form

A(1,3) A(3)

A(1,5,6) A(5,6)

A(1,7,1) A(7)

A(1,1,8) A(8)

A(9,10,1) A(9,10)

A(11,1,1) A(11)

A(1,1,1) A(1)

Note that the data transfer will only be undertaken if the minimal form arrays have the same
number of dimensions, and the same dimension lengths.

6.4.2 Character assignment

Assignment statements involving CHARACTER arrays are basically the same as for other
arrays, but extra flexibility is provided. The last dimension of the "minimal form" arrays need
not have the same length. For the declaration:

CHARACTER: c6(6),c7(7);

The following assignments are legal:

c6:= c7; --c7 is truncated to its first 6 characters

c7:= c6; --c6 is "space" extended to 7 characters

Truncation, or space extension is used on the source array to match the last dimension length
of the destination array. The following shows the same idea but here the source array is a
character string:

c6:= "1234567890"; --c6 becomes "123456"

c7:= "abc"; --c7 becomes "abc " , 4 spaces added

6.4.3 Interrogating array sizes

ESL provides a number of standard functions for determining the dimension lengths of a
array, that is for an array passed as an argument. The table below presents these functions
for an array A, of any type.

Operation Legal example

No. of elements in 1st dimension x:= LEN_1(A)

No. of elements in 2nd dimension x:= LEN_2(A)

No. of elements in 3rd dimension x:= LEN_3(A)

Total no of elements in array x:= LEN(A)

6.4.4 Numerical array (matrix) operations

Matrices, two dimensional arrays, may appear in expressions and be subject to a number of
different operations. A complete matrix may be treated as a scalar variable in many cases.
The following is a legal ESL statement:

A:= B * C + D;

providing the matrices A, B, C and D have appropriate dimensions, and are of compatible
types. Matrices B and C are multiplied together, and the resultant product is added to matrix

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-10

D, and then that result is assigned to matrix A. Matrix arithmetic includes addition,
subtraction, multiplication, unary minus and multiplication by a scalar.

Linear differential equations can be written in matrix form:

x':= A*x + B*u;

y := C*x + D*u;

where x, u, and y are the state, input and output vectors respectively (defined as column
matrices), and A, B, C and D are matrices of coefficients with appropriate dimensions.

Note that only one dimensional column matrices (vectors) can be used as state vectors in
differential equations.

Given the following declarations:

REAL:A(3,4),B(3,4);

REAL:C(3,4)[c11,c12,c13,c14,

 c21,c22,c23,c24,

 c31,c32,c33,c34];

REAL:D(1,4)[d1,d2,d3,d4];

REAL:E(3);

REAL:F(4) [f1,f2,f3,f4];

REAL:G(3) [g1,g2,g3];

REAL:W(4,3);

REAL:U(3,3);

REAL:V(3,3)[v11,v12,v13,

 v21,v22,v23,

 v31,v32,v33];

REAL: x;

where the c, d, f, g and v symbols should be regarded as real numbers initialising their
associated array.

The table below illustrates the different ESL array/matrix operations.

Operation Legal example

assignment B:= C;

unary minus A:= -B;

addition A:= B + C;

subtraction A:= B - C;

multiplication of matrices E:= C * F;

x:= D * F;

multiplication by a scalar A:= B * 3.0;

A:= 3.0 * B;

inverse of a matrix U:= INV(V);

transpose of a matrix W:= TRNSP(C);

determinant of a matrix x:= DET(V);

Providing matrix sizes are consistent, and in the case of inversion the matrix is not singular,
(errors given at run-time), the operations in the table above may be combined to form
compound expressions. For these the scalar rules of precedence apply, for example:

E:= (INV (TRNSP(W) * W) * 2.5 + V) * G;

6.4.5 Vector operations

ESL provides two special functions that operate on vectors (three element column arrays), the
"dot" product and the "cross" product.

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-11

The dot product is written:

x := A.B;

and is a scalar quantity equal to the product of the magnitudes of the vectors multiplied by the
cosine of the angle between them, as shown in the figure below.

Vector Dot Product

The cross product is written:

V := A^B;

Vector Cross Product

and is a vector of magnitude equal to the area of a parallelogram with A and B as adjacent
sides, and in a direction perpendicular to the plane containing A and B, in a "right-hand
sense", as shown in the figure above.

Provided that the matrices have appropriate dimensions, vector and matrix operations may be
naturally combined, for example:

W' := INV(I)*(N-I*(W^N));

where I is a square matrix of size three and W and N are (3 element) vectors.

6.4.6 Array functions

ESL allows functions to be declared which return array values, for example:

PROCEDURE current(REAL:R(*,*),V(*)) RETURN REAL;

 RETURN INV(R)*V;

END current;

For the matrix equation:

V = R * I

the procedure returns I given R and V, and could be used by a statement of the form:

I:=current(R,V);

where I, R and V have appropriate dimensions, and are REAL arrays.

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-12

The RETURN REAL in the procedure declaration only specifies that a REAL result is to
returned (scalar or array), but the RETURN statement defines, computes and returns an
array.

6.5 Character Array Operations
In many respects CHARACTER arrays are treated in an identical manner to other array types.
This section attempts to point out certain differences, and starts by introducing a different
terminology which is used in certain cases.

• A one dimensional array is termed a character string.

• A two or three dimensional array is termed an array of characters.

• A single CHARACTER variable is considered to be a one dimension character array
of length one, and can be used in place of a character string except for subscripting
and slicing.

6.5.1 Character array functions

The table below illustrates the special functions for use on character strings.

Operation Example

ASCII code (0 to 127 in decimal) of first
character in character string argument

J:=IACHAR(C);

character value corresponding to the ASCII
code (in decimal) of the integer argument

C:=ACHAR(J);

position of second string in the first string n:=SUB_STRING(C,C2);

no of characters in first dimension n:= LEN_1(C);

no of characters in second dimension n:= LEN_2(C);

no of characters in third dimension n:= LEN_3(C);

total no of characters in array n:= LEN(C)

The SUB_STRING function is identical in operation to the FORTRAN INDEX function, and will
return zero if the sub-string is not found. The character variable may be replaced by literal
characters as shown below:

character:string(16)/"This is a string"/;

character:subb(6)/"string"/;

....

print sub_string(string,subb);

print sub_string(string,"is");

print sub_string(string,"as");

The first print statement returns 11, the second 3 ("is" in "this") and the third a zero indicating
not found. It is also possible to search for a character variable in a literal string, for example:

print sub_string("This is another string",subb);

will give the result 17.

The IACHAR function returns the ASCII character code of the character argument. For
example, using the above string declaration, the following:

PRINT IACHAR(string);

PRINT IACHAR(string(1));

PRINT IACHAR(string(2));

Chapter 6 Arrays, Matrices, Vectors and Characters

ESL Simulation Software - Development Guide 6-13

will give 84 for "T" in the first two statements and 104 for "h" in the third. The function will
differentiate between upper and lower case characters, and literal character strings may be
used, as:

PRINT IACHAR("A");

PRINT IACHAR("a");

which will give 65 and 97 respectively.

The ACHAR function is the reverse of IACHAR, and returns a character corresponding to the
ASCII code argument, for example:

i:=66;

j:=98;

PRINT ACHAR(i);

PRINT ACHAR(j);

which will print "B" and "b" respectively.

6.5.2 Character comparison

Literal strings and string variables may be used with the numerical relational operators in
logical expressions, for example:

IF b = "abcdef" THEN

....

ELSE_IF b /= a THEN

....

END_IF;

When the lengths of the operand strings do not match, the shorter string is considered to be
space extended.

The complete set of relational operators which may be applied to character strings is shown in
the table below:

Relation Operation

s1 = s2 true if equal

s1 /= s2 true if not equal

s1 >= s2 true if greater than or equal

s1 > s2 true if greater than

s1<= s2 true if less than or equal

s1 < s2 true if less than or equal

For comparison purposes, the ASCII code of each character in the strings are compared, one
by one starting at the left. As soon as an inequality is found the process is complete. The
ASCII code reveals that "b" is greater than "a", "a" is greater than "A", "A" is greater than "2",
and "2" is greater than "1".

6.5.3 Characters as subprogram arguments

Character variables, strings and character arrays may be used as arguments in calls to
subprograms in the same way as other arrays, with the exception that the SUBMODEL does
not allow CHARACTER output arguments.

Note that literal strings also may be actual arguments which correspond to formal arguments
declared as a CHARACTER, character string or array.

6.5.4 Character function procedures

In the same way that function PROCEDUREs may return other arrays, they may also return
CHARACTER arrays.

Chapter 7 Multivariable Transfer Functions

ESL Simulation Software - Development Guide 7-1

CHAPTER 7

7 Multivariable Transfer Functions
This section describes the support ESL provides for "multivariable transfer functions". This
allows a matrix of transfer functions with vector inputs and outputs to be set up.

Contents:

• Introduction

• Example 1 - Multivariable feedback control system

• Example 2 - Coupled two-mass system

• Limitations

7.1 Introduction
A linear dynamic system having multiple inputs and multiple outputs may be described by
means of a transfer function matrix, G(s). For example:

𝒀(𝑠) = 𝑮(𝑠)𝑼(𝑠)

where U(s) is an input vector, Y(s) is an output vector and G(s) is a matrix of transfer
functions with appropriate dimensions.

In the ESL language, a linear multivariable system may be described by a
TRANSFER_MATRIX statement, which must appear in the dynamic region of a program. The
TRANSFER_MATRIX statement is an extension of the single variable TRANSFER statement
and has the following form:

Y := TRANSFER_MATRIX (transfer function matrix) * expression;

The form of Y and expression are determined by the dimensions of the transfer function
matrix. If the transfer function matrix has n rows and m columns, then Y must be declared as
an n element real vector and expression must be an array expression which produces an m
element real vector.

Note that in ESL an n x 1 matrix can be regarded as n element column vector, and a 1 x m
matrix as a m element row vector.

If the transfer function matrix has a single row (1 x m), then Y may be a scalar variable or a 1
element vector. Similarly if the matrix has a single column (n x 1), then expression may be
scalar or a 1 element vector.

The transfer function matrix must be factorised by finding the lowest common denominator of
all its elements and expressing it in the following manner:

𝐺(𝑠) =
1

𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
[𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 𝑡𝑒𝑟𝑚𝑠]

For example:

𝐺(𝑠) =

[

(𝑠 + 1)

(𝑠 + 2)

𝑘

(𝑠 + 1)(𝑠 + 2)
𝑘

(𝑠 + 1)(𝑠 + 2)

1

𝑠]

may be written as:

𝐺(𝑠) =
1

𝑠(𝑠 + 1)(𝑠 + 2)
[
𝑠(𝑠 + 1)(𝑠 + 1) 𝑘𝑠

𝑘𝑠 (𝑠 + 1)(𝑠 + 2)
]

A corresponding ESL statement is:

Chapter 7 Multivariable Transfer Functions

ESL Simulation Software - Development Guide 7-2

Y := TRANSFER_MATRIX(s(s + 1)(s + 2)

 [s(s + 1)(s + 1), k*s;

 k*s, (s + 1)(s + 2)]) * U;

where U and Y are two element input and output vectors (declared as REAL: U(2), Y(2);).

The lowest common denominator appears first (not its reciprocal) followed by the numerator
matrix enclosed by square brackets []. Commas are used to separate matrix row elements,
and semicolons to separate rows. The ESL compiler checks for consistency of the numerator
matrix (same number of elements in each row), while dimensional compatibility of the input
expression and output vector is checked at run time.

The syntax of the denominator and numerator terms is the same as for the TRANSFER
statement with the addition that zeros (s, s**2 etc) may appear after the optional gain in the
numerator terms. The following are acceptable numerators:

s 10*s 3.0*s**2 k*s(s + 1)(s + 2)

Use of the TRANSFER_MATRIX statement is illustrated in the following examples.

7.2 Example 1 - Multivariable feedback
control system

The first example considers the multivariable feedback control system shown in the figure
below.

Multivariable feedback control system

The control system forward path is given by:

𝐺(𝑠) =

[

1

(𝑠 + 1)
−

1

𝑠
2

𝑠

1

(𝑠 + 2)]

and the feedback path by:

𝐻(𝑠) = [
1 0
0 1

]

The transfer function matrix is written in factorised form:

𝐺(𝑠) =
1

𝑠(𝑠 + 1)(𝑠 + 2)
[

𝑠(𝑠 + 2) −(𝑠 + 1)(𝑠 + 2)

𝑠(𝑠 + 1)(𝑠 + 2) 𝑠(𝑠 + 1)
]

Since the transfer function matrix has dimensions 2 x 2, both the input and output of the
TRANSFER_MATRIX statement must be arrays of dimensions 2 x 1.

The feedback path may be realised in this case by simply multiplying the control system
output by a constant array. Had the feedback path been more complex, requiring a transfer
function description, a further TRANSFER_MATRIX statement could have been used in place
of the multiplication.

An ESL program to simulate the response of the control system to a unit step applied to both
inputs is given below. The program is provided in the ESL examples directory as

Chapter 7 Multivariable Transfer Functions

ESL Simulation Software - Development Guide 7-3

mv_tfun1.esl. A post run plot generated from the prepare file, mv_tfun1.dsp using ESL-
Displays, presents the results of the simulation.

-- Multivariable transfer function test program -

-- Control system

--

STUDY

 MODEL multi_var_ctrl;

 REAL: R(2)/2*1.0/, E(2), C(2), B(2),

 H(2,2)[1.0, 0.0,

 0.0, 1.1];

 DYNAMIC

 C := TRANSFER_MATRIX(s(s + 1)(s + 2)

 [s(s + 2), -(s + 1)(s + 2);

 2(s + 1)(s + 2), s(s + 1)])*E;

 E := R - B;

 B := H*C;

 STEP

 PLOT "Multivariable control system", t, C(1), [C(2)],

 0, tfin, 0, 2;

 PREPARE " ", t, C;

 END multi_var_ctrl;

--

 multi_var_ctrl;

--

END_STUDY

Post-run plot from control system example

Chapter 7 Multivariable Transfer Functions

ESL Simulation Software - Development Guide 7-4

7.3 Example 2 - Coupled two-mass
system

A second example considers a simple mechanical system comprising a double mass-spring-
damper arrangement, as shown in the figure below. The arrangement is treated as a two-
input, two-output system where the inputs are the forces applied to each of the two masses
and the outputs are the linear positions of the two masses.

Coupled two-mass multivariable system

The system is described by the following equations:

𝑓1 − 𝐶1(𝑦1
′ − 𝑦2

′) − 𝐾1(𝑦1 − 𝑦2) = 𝑀1𝑦1
′′

𝑓2 + 𝐶1(𝑦1
′ − 𝑦2

′) + 𝐾1(𝑦1 − 𝑦2) − 𝐶2𝑦2
′ − 𝐾2𝑦2 = 𝑀2𝑦2

′′

which may be expressed in the Laplacian domain as:

[
𝑀1𝑠

2 + 𝐶1𝑠 + 𝐾1 −𝐶1𝑠 − 𝐾1

−𝐶1𝑠 − 𝐾1 𝑀2𝑠
2 + (𝐶1 + 𝐶2)𝑠 + (𝐾1 + 𝐾2)

] [
𝑦1

𝑦2
] = [

𝑓1
𝑓2

]

By inverting the Laplacian matrix, the following is obtained:

[
𝑦1

𝑦2
] =

[

𝑀2𝑠

2 + (𝐶1 + 𝐶2)𝑠 + (𝐾1 + 𝐾2)

𝛥(𝑠)

𝐶1𝑠 + 𝐾1

𝛥(𝑠)

𝐶1𝑠 + 𝐾1

𝛥(𝑠)

𝑀1𝑠
2 + 𝐶1𝑠 + 𝐾1

𝛥(𝑠)]

[
𝑓1
𝑓2

]

where

𝛥(𝑠) = 𝑀1𝑀2𝑠
4 + (𝑀1𝐶1 + 𝑀1𝐶2 + 𝑀2𝐶1)𝑠

3 +

(𝑀1𝐾1 + 𝑀1𝐾2 + 𝑀2𝐾1 + 𝐶1𝐶2)𝑠2 + (𝐶1𝐾2 + 𝐶2𝐾1) + 𝐾1𝐾2

Thus the system may be described in terms of a transfer function matrix as:

𝒀 = 𝑮(𝑠)𝑭

where F is the input force vector, Y is the output position vector and G is the transfer function
matrix given above.

The above model is expressed in terms of the ESL TRANSFER_MATRIX statement as:

Y := TRANSFER_MATRIX((a0*s**4 + a1*s**3 + a2*s**2 + a3*s + a4)

 [(M2*s**2 + b1*s + b2), (C1*s + K1);

 (C1*s + K1 (M1*s**2 + C1*s + K1)]) * F;

where a0, a1, .. , a4 and b1, b2 are pre-calculated Laplacian coefficients and both Y and F
are declared as two element vectors.

The following is a listing of an ESL program to simulate the behaviour of the system to step
input applied forces. The program, which appears in the ESL examples directory as

Chapter 7 Multivariable Transfer Functions

ESL Simulation Software - Development Guide 7-5

mv_tfun2.esl, generates the prepare file mv_tfun2.dsp. Graphical output generated using
ESL-Displays is presented in the graph.

-- Multivariable transfer function test program -

-- Coupled two-mass system

--

STUDY

--

 PACKAGE data;

-- Mechanical system data:

--

-- m1, m2 masses;

-- c1, c2 damping coefficients;

-- k1, k2 spring coefficients;

-- f1, f2 constant applied forces.

 PARAMETER REAL: m1/0.1/, m2/1.0/,

 c1/0.05/, c2/0.5/,

 k1/2.0/, k2/1.0/,

 f1/1.0/, f2/1.5/;

 END data;

--

 MODEL two_mass_m;

-- Transfer function matrix model.

-- Represents the system using a transfer function matrix

 REAL: Y(2), F(2);

 REAL: a0, a1, a2, a3, a4, b1, b2;

 USE data;

 INITIAL

 a0 := m1*m2; a1 := m1*c1 + m1*c2 + m2*c1; a4 := k1*k2;

 a2 := m1*k1 + m1*k2 + m2*k1 + c1*c2; a3 := c1*k2 + c2*k1;

 b1 := c1 + c2; b2 := k1 + k2;

 F(1) := f1;

 F(2) := f2;

 DYNAMIC

 Y := TRANSFER_MATRIX((a0*s**4 + a1*s**3 + a2*s**2 + a3*s

 + a4)[(m2*s**2 + b1*s + b2), (c1*s + k1);

 (c1*s + k1), (m1*s**2 + c1*s + k1)])*F;

 STEP

 PLOT "Coupled two-mass multivariable system",

 t, Y(1), [Y(2)], 0, tfin, 0, 4;

 PREPARE " ", t, Y;

 END two_mass_m;

--

-- Experiment.

 REAL: A(4,4), B(4,2), C(2,4), D(2,2);

 USE data;

 tfin := 20.0;

 cint := 1.0;

 nstep:= 10.0;

 two_mass_m;

--

END_STUDY

Chapter 7 Multivariable Transfer Functions

ESL Simulation Software - Development Guide 7-6

Graph from two-mass example

7.4 Limitations
Care must be taken when specifying a transfer function matrix that contains elements which
are not strictly proper (for example, k, 10, (s + 1)/(s + 2)). Such elements imply an algebraic
relationship between one or more of the transfer function matrix inputs and outputs, and will
cause ESL to report a sorting problem if used in a feedback loop in which algebraic
relationships are also present in the feedback path. The solution is either to reformulate the
problem to eliminate the algebraic loops or treat it as single variable and use the TRANSFER
statement.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-1

CHAPTER 8

8 Input-Output and File Handling
Although all ESL input and output can be managed from ESL-Studio, I/O support is provided
through ESL program statements. This allows ESL programs to be run independently of ESL-
Studio and customized for specific applications. When running an ESL program from ESL-
Studio, ESL statement generated I/O can be used as an alternative to, or in addition to ESL-
Studio specified output.

ESL provides comprehensive support for the input/output of text to the user terminal and files,
and in addition it supports the output of graphical data. This section presents the text
input/output statements PRINT, TABULATE and READ, and starts by describing how files are
connected to an ESL program. Finally the graphical output support is presented.

Contents:

• Connecting Files

• File Deletion

• Input/output Error Status

• The PRINT Statement

• The TABULATE Statement

• The READ Statement

• The PREPARE Statement

• The PLOT Statement

• The ESL-Displays program

8.1 Connecting Files
The ESL text input/output statements, PRINT, READ and TABULATE, may be optionally
associated with a file rather than keyboard input or screen output. The link to a file is achieved
by a "file-specifier" being connected to a file in a file connection statement. File-specifiers are
declared in the same way as other variables, and the declaration comprises the keyword
FILE: followed by one or more file-specifier names, for example:

FILE: infile, output, tempfile;

The file-specifier is connected to a text file by one of the following ESL statements:

 OPEN

 CREATE

 REWRITE

Subsequent use of the file-specifier in READ, PRINT and TABULATE statements will then
reference the connected file. The connection between specifier and file is broken by a CLOSE
statement which allows the specifier to be reused. Any file-specifier that is not connected to a
file will default to the terminal.

Note that file specifiers may be used as actual arguments of subprograms.

8.1.1 Opening, creating and rewriting files

Files may be connected to a file specifier in one of three ways:

• Open - an existing file may be opened for reading.

• Create - a new file may be created for writing (a file of the same name must not
exist).

• Rewrite - an existing file may be connected for writing in which case the original
contents are over-written (lost), but if there is no existing file, this connection is the
same as "create".

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-2

The ESL OPEN, CREATE and REWRITE statement perform the above file-specifier to file
connection operations, and the CLOSE statement severs the connection. The OPEN
statement connects a text file for reading, for example:

FILE: filespec;

....

OPEN filespec, "datafile.dat";

Here a file-specifier, filespec is connected to the existing file datafile.dat. If the file specifier
is already connected to another file, that file will be disconnected, or closed, and a connection
made to the new file. The file may be defined by a character expression or a character
variable:

OPEN filespec, char_variable;

When the specified file cannot be opened, if, for example, the file does not exist, the user is
prompted for an alternative file.

To allow the user program to handle such error conditions ESL allows all file connection
statements to include a "status" option, for example:

OPEN filespec, "datafile.dat", IOSTAT=ERR;

In this case ERR is a user's integer variable which is set to indicate the status of the
operation. If ERR is zero the operation was successfully completed, otherwise the value of
ERR indicates the nature of the error. IOSTAT Errors shows possible error values for all
input/output operations. This extension to the OPEN statement allows control to remain in the
ESL program, and appropriate corrective action may be programmed. Note that with the
status option there is no user interaction in the event of an error.

Once a file-specifier is linked to a file by the OPEN statement, the file's contents may be read
into ESL by READ statements which use the file-specifier (see The READ Statement).

To open a file for output CREATE and REWRITE statements are provided. These statements
are of the same format, and their operation only differs when the named file already exists.
CREATE will create a new file if no file of the specified name already exists. If the file already
exists the user will be prompted to indicate whether it may be overwritten, or to provide the
name of an alternative file.

The REWRITE statement will over-write an existing file of the same name, otherwise it will
create the required file. Examples of these statements are:

FILE: file1, file2;

....

CREATE file1, "datfile1.dat";

....

REWRITE file2, "datfile2.dat";

The status option also may be used here, in which case the user's program must handle the
error conditions. Note there will be no user interaction in the event of a problem.

CREATE file1, "datfile1.dat",IOSTAT=ERR1;

....

REWRITE file2, "datfile2.dat",IOSTAT=ERR2;

PRINT and TABULATE statements may use file-specifiers, file1 and file2 to direct their text
to the connected files.

ESL currently allows a maximum of 100 files to be connected at any one time.

8.1.2 Closing file connections

Following completion of file access, it is good practice to close the connection. The CLOSE
statement disconnects the file from the file-specifier, which may then be reused, for example:

CLOSE file1;

This statement does not produce an error. All file connections are automatically closed at the
end of the program.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-3

8.2 File Deletion
The DELETE statement physically deletes a file, which must not be connected to a file-
specifier, for example:

DELETE "file1";

There are cases where deletion is not possible, for example, due to file protection
mechanisms, or because the file is already connected to a file-specifier. Failure to delete will
result in an error message, but the program continues. The status option may be used if the
program wishes to check the success of the operation, for example:

DELETE "file1",IOSTAT=ERR;

See IOSTAT Errors for definition of status variable ERR.

8.3 Input/Output Error Status
The following statements may include the error status option:

OPEN, CREATE, REWRITE, DELETE, READ, and READEL

The error status option must appear at the end of the statement, and has the general form:

... ,IOSTAT = err;

where err is a declared integer variable.

If the error specification is used, any errors encountered in the operation are returned as a
code in err. If not used, the program will either interact with the user to resolve the problem,
or in more serious cases abort. The status return codes are given in IOSTAT Errors.

IOSTAT Errors

Return value Status

0 Operation was performed without error

1
Eol was encountered when a data value was expected. A data value
terminated by Eol does not cause the IOSTAT variable to be set to Eol

2 End-of-file was encountered

3
Error occurred converting input data to internal form- for example, illegal
number format

4 Failure to open file

5 Create file failure - file already exists?

6 Failure to delete file

7 Failure to create file

8 Maximum file channels in use (>100)

9 Too many direct access files

10 File inaccessible - illegal name, already open?

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-4

8.4 The PRINT Statement
The PRINT statement allows text and user variables to be output to the terminal screen or to
a file. For example:

PRINT outfile, x*k, y, z;

PRINT outfile, "Results are:",x,y,z;

PRINT "Results are:", x,y,z;

The first two examples print data to a previously declared file-specifier which is connected to
a file for output. If the file-specifier is unconnected output is directed to the terminal screen.
The last example directs its output to the terminal. Note that expressions may be included in
the output list.

If the output from a PRINT exceeds the width of one line (79 characters) further lines are
output until the output list is exhausted. When more than one line is needed numerical and
logical values are never split between lines, but always appear complete on one line.
Character output, however, may be split between lines.

Printing arrays

The ESL PRINT statement for arrays, described in Arrays, Matrices, Vectors and Characters,
clarifies understanding of the array initialisation process. The same examples are appropriate
here. A full program is presented:

study

 INTEGER: COL(5)[1,2,3,4,5], ROW(1,5)[1,2,3,4,5],

 MAT_R(2,3) [11,12,13,

 21,22,23],

 MAT_C(2,3) /11,21,

 12,22,

 13,23/,

 ARR(2,3,4) [111,112,113,114,

 121,122,123,124,

 131,132,133,134,

 211,212,213,214,

 221,222,223,224,

 231,232,233,234];

 PRINT "COL =",/,COL;

 PRINT "ROW =",/,ROW;

 PRINT "MAT_R=",/,MAT_R;

 PRINT "MAT_C=",/,MAT_C;

 PRINT "ARR =",/,ARR;

end_study

The results of this program follow:

 COL =

 1

 2

 3

 4

 5

 ROW =

 1 2 3 4 5

 MAT_R=

 11 12 13

 21 22 23

 MAT_C=

 11 12 13

 21 22 23

 ARR =

 111 112 113 114

 121 122 123 124

 131 132 133 134

 211 212 213 214

 221 222 223 224

 231 232 233 234

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-5

The ESL PRINT statement outputs numerical arrays in row-major order, that is elements are
processed in the order determined by changing the last subscript, in cyclic fashion, after each
element is processed. The other subscripts are cycled in a similar fashion but at a lower
frequency, the first subscript changing least frequently. The PRINT also "formats" the output
by inserting "new-lines" each time the last subscript is changed to its lower dimension bound.

This rather complicated description simply means that arrays are presented in their natural
mathematical order. That is:

• A column vector is presented as a vertical column.

• A row vector as a horizontal row.

• A two-dimension matrix as a series of horizontal rows.

• A three-dimension matrix, as a number (size of first dimension) of two-dimension
matrices.

CHARACTER arrays are treated in a similar fashion, with one exception. That is a character
column, one-dimension matrix, is presented as a horizontal row. The above example was
modified to use CHARACTER arrays:

study

 CHARACTER: COL(3)["col"], ROW(1,3)["row"],

 MAT_R(2,3) ["cat",

 "sat"],

 MAT_C(2,3) /"cs","aa","tt"/,

 ARR(2,3,4) ["cats",

 "sat ",

 "mats",

 "CATS",

 "SAT ",

 "MATS"];

 PRINT "**** COL <",COL,">";

 PRINT "**** ROW <",ROW,">";

 PRINT "**** MAT_R=",/,MAT_R;

 PRINT "**** MAT_C=",/,MAT_C;

 PRINT "**** ARR =",/,ARR;

end_study

This program gives the following results:

 **** COL <col>

 **** ROW <row>

 **** MAT_R=

 cat

 sat

 **** MAT_C=

 cat

 sat

 **** ARR =

 cats

 sat

 mats

 CATS

 SAT

 MATS

Note that the column array/matrix has now been presented as a row. Also that, as far as
printing is concerned, the row-major order is essential, see, for example, MAT_C the
character array presented in column-major order.

Output format control (Data output formatting) applies to each element of an array.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-6

8.4.1 Data output formatting

The default format used by the PRINT statement is:

REAL values: FORTRAN G13.5 (field width 13 characters, 5 significant digits, and
room for exponent of four characters)

INTEGER values FORTRAN I9,4X (field width 9 characters, followed by 4 spaces)

LOGICAL values: 13 character field width (centred). The words TRUE or FALSE appear

To override the default format, the value to be output is followed by a colon, a whole number,
and possibly a decimal part. That is. :m.n (for example, :12.5). This is interpreted as:

REAL values: if n /= 0 then (FORTRAN Fm.n) – field width m, with n decimal places;
else_if n = 0 (that is, :m.0 or :m) then
 if m > 8 then FORTRAN Gm.(m-8)
 else_if m = 8 then FORTRAN G8.1
 else_if m < 8 then FORTRAN G13.5 (the default format)

INTEGER values: field width m, right justified, FORTRAN Im

LOGICAL values: field width m, right justified

CHARACTER: are not influenced by format control

Note that a negative format specifier (for example, :-m.n or :-m) suppresses all spaces in
output.

The maximum field width m is restricted to 24 characters.

The PRINT statement may also include line control characters:

 / forces a new line

 -/ suspends a new line, next print will append;

To illustrate the general G format, consider format G12.4 which means a field of width 12
characters with 4 significant figures. This may be specified by x:12, and when x has the value
-0.0003141592654 the output will be:

" -0.3142E-03"

Note that formatting real values with the "G" format requires a field width large enough for:
possible negative sign; leading zero; decimal point; the specified number of significant figures;
and four positions for a possible exponent.

The following example PRINT statements illustrate the use of formatting. Note that the ^
character is interpreted as a space:

REAL:x/202.4544/,y/22.55443/,z/3.1415926/;

INTEGER:a/3/,b/32/,c/321/;

LOGIC:logic_1/FALSE/;

PRINT x,y,z;

-- gives:

 ^^^202.45^^^^ -- 13 positions

 ^^^22.554^^^^ -- 13 positions

 ^^^3.1416^^^^ -- 13 positions

PRINT x:7.3,y:6.2,z:15.12;

-- gives:

 202.454 -- 7 positions, 3 decimal places

 ^22.55 -- 6 positions, 2 decimal places

 ^3.141592600000 -- 15 positions,12 decimal places

PRINT a,b,c;

-- gives:

 ^^^^^^^^3^^^^ -- 9 positions, 4 trailing spaces

 ^^^^^^^32^^^^ -- as above

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-7

 ^^^^^^321^^^^ -- as above

PRINT a:4,b:6,c:8;

-- gives:

 ^^^3 -- 4 position field

 ^^^^32 -- 6 position field

 ^^^^^321 -- 8 position field

PRINT logic_1;

-- gives:

 ^^^^FALSE^^^^ -- centred in 13 position field

PRINT logic_1:3;

-- gives:

 FAL -- truncated to formatted field

The "/" is used as a PRINT element to force a new line, whereas a "-/" is normally used at the
end of the PRINT to suppress the normal end-of-print new line. For example:

PRINT "This is one line",/,"and this is the next",-/;

PRINT " but this continues on the second line";

gives the output:

This is one line

and this is the next but this continues on the second line

8.5 The TABULATE Statement
A TABULATE statement is designed for use during a simulation run to output results in text
form from the COMMUNICATION or STEP region. In these cases a heading is output at the
start of each simulation run, and data values are output at each communication or step point.
This creates a table arranged in columns with appropriate variable names at the top of each
column.

The format of the TABULATE statement is illustrated by the following examples:

TABULATE tabfile, a,b,c;

Output will be directed to the file to which file-specifier tabfile is connected, or to the terminal
if the file-specifier is not connected. The output contains the headings, a, b and c, and then
the tabular data.

TABULATE "file",t,x,y;

TABULATE " ",t,x,y;

In the first case the data will be output to file.tab, which will be automatically connected
(REWRITE mode), and overwrite any existing file of the same name. If the file name is
specified as " ", than the file used will be the name of the program with a .tab extension. The
default extension .tab is used unless the file is specified with an explicit extension. Whenever
the program is restarted, including a "restart" from the INTERACT facility (ESL Run Control),
the tabulate file will be overwritten.

TABULATE a,b,c*2, array1;

This example directs output to the terminal, and shows the use of a scalar expression, and an
array variable. Arrays are output in row-major order.

The data is output using default formats. Note that the RESERVED variable DIS_ST may be
used, with an IF statement, to control the frequency of output in the STEP region.

A file created by a TABULATE statement during a simulation run, which only contains
numerical or logical data, may be converted to PREPARE format through ESL-Displays, in
order to present results graphically as well as in tabular form.

A TABULATE statement may be used outside the dynamic loop of the simulation in which
case both the headings and the values are output each time the statement is executed.

The maximum number of variables permitted in a TABULATE statement is actually
determined by the character length of each of the TABULATE elements, and is approximately
100.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-8

8.6 The READ Statement
The READ statement may accept text input from the keyboard, or from a file connected to a
file-specifier, for example:

READ filespec, I, V, R;

Here I, V and R are read from the file connected to the file-specifier filespec. If the file-
specifier is omitted (or is not connected to a file) the READ statement will take its input from
the keyboard, for example:

READ I, V, R;

The READ list may include user variables of any type, and also array variables and slices are
allowed.

In these examples the data to be read should be presented in "free format" style.

8.6.1 Free format input

Unless the READ statement specifies explicit format control (see Data input formatting) the
input data may be presented in free format. Free-format input allows all data items to be
presented on a single line, or the data items may be spread over several lines. An individual
data item must not be split by a line boundary, and each new READ statement requires its
data to start on a new line.

Each data item may be preceded by spaces, and must be terminated with a space, comma,
equal sign ("="), or eol (end-of-line). In particular:

• INTEGER values may be preceded by an optional plus or minus, immediately
followed by the integer value. No embedded spaces are allowed. Any decimal point
will cause rejection of the value.

• REAL values may be preceded by an optional plus or minus. They may be entered
as integers, or may start, or end, with a decimal point, and may also include an
exponent (for example, -4.12e-5).

• CHARACTER strings must be presented within string quotes (" or %), or as un-
quoted strings which do not contain embedded spaces, commas or equals (=) signs.
The character string may be extended, or truncated, to match the number of
characters required to fill the variable specified in the READ. The character data must
not be split over a line boundary, and it does not undergo case conversion (for
example, lower to upper case).

• LOGICAL values are treated as character strings, which must match one of the
following:

True False

true false

tru fals

tr fal

t fa

yes f

ye no

y n

1 0

During READ processing, the input is read, a line at a time, into an input buffer. An attempt is
then made to set each variable in the READ statement list to the corresponding data value
from input buffer. Leading spaces are ignored, and if a valid delimiter (comma, equal sign or
eol) is encountered when a data value is expected then:

• REALs are given the value 0.0.

• INTEGERs are given the value 0.

• LOGICALs are set to false.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-9

• CHARACTER strings are space filled.

The following example illustrates free format input:

REAL: x; INTEGER:i; LOGICAL: L; CHARACTER ch(4);

....

READ x,i,L,ch;

Any of the following sets of input data would satisfy the READ:

3.1415926 12345 true abcd

0.31415926e1 12345 T "abcd"

.31415926e1,12345,1,"abcd"

-3.14,,,"a"

The first three examples are equivalent, setting x:=3.1415926, i:=12345, L:= true, and
ch:="abcd". The last example of input data would set x:=-3.14, i:=0, L:=false, and ch:="a ".

Reading arrays

Array variables, or slices, may appear in a READ statement, and ESL interprets this as
though each element of the array is presented separately, in row-major order (Arrays,
Matrices, Vectors and Characters). CHARACTER arrays, however, are a little more complex.

CHARACTER array data is expected in row-major order, but the last dimension is treated as
a single character string, for example:

CHARACTER: c4(4), c24(2,4);

....

read c4;

read c24;

One character string would satisfy the first READ, for example, the following responses would
result in the setting c4 as shown:

Response: ABCD sets c4 := "ABCD";

 A sets c4 := "A ";

While the second READ requires two character strings, for example:

Response: abcde 123

Sets c24(1..1, 1..4) := "abcd", and c24(2..2, 1..4) := "123 ".

Format control (see below) used with an array implies all that elements of the array are
subject to the format specification.

8.6.2 Keyboard input

During keyboard input ESL will interact with the user in an attempt to correct input data which
would otherwise result in an error. Consider the example:

READ I, V, R;

ESL will generate a default prompt of "I, V, R:" to remind the user what input is required. If a
more explicit prompt is required this may be provided as a character string following the
keyword READ, for example:

READ "Input V (volts), I (amps) and R (ohms): ", I,V,R;

or as a character variable (string), or expression, enclosed in () brackets, for example:

READ (char_variable), I, V, R;

The () brackets are necessary to distinguish the character variable as a prompt, and not as
an item to be read.

To satisfy this READ the user may type the first value followed by Return/Enter, and if that
input was valid for the type of "I" then the user would be prompted:

Enter value for item 2:

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-10

In response, the user may enter data values for the next list variable (V), or indeed for all
remaining data (that is, for V and R) to satisfy the READ. If any data value is illegal the
process will be restarted from the input list variable corresponding to the illegal data, and the
user will be prompted to give data for that variable and all remaining variables.

Format specifiers (see below) may be used to override the default free format input
conventions, although such specifiers are not normally useful during keyboard reading. There
is one exception, however - when reading character data, it may be desirable to override the
default situation of allowing either upper or lower case characters. The format specifier ":0.1"
will convert all characters to upper case.

A keyboard break (Ctrl-Break or Ctrl-C) during input will cause control to be passed to the
INTERACT service. Note if the operating system screen, rather than the ESL controlled
screen, is being used it is normally necessary to press Return/Enter immediately following
the break key.

8.6.3 The READEL statement

The READEL (read next element) statement provides a means of reading data one element
at a time. After a READ is complete the remaining input line characters which have not been
processed may be read with one or more READEL statements. It operates in the same way
as a READ but takes its input data from the characters remaining in the buffer (those which
have not yet been processed). The format of the READEL statement is the same as READ
but it may not have a file-specifier.

The following examples, which are functionally equivalent, illustrate the relationships between
READ and READEL (note the ":" is for format control described in Data input formatting).

READ infile, a, b:6, c:10;

is equivalent to:

READ infile;

READEL a, b:6, c:10;

and also to:

READ infile,a;

READEL b:6;

READEL c:10;

The READEL may be used if the format of the data depends on the first data element read.
For example, the following section of code prompts the user to respond with the number of
data items to read in, and then to provide the specified number of data items:

REAL:num;

INTEGER: x;

....

READ "Input number of items, followed by values: ", num;

FOR i:=1..num LOOP

 READEL x, IOSTAT=err;

 IF err /= 0 THEN

 PRINT "data format error";

 STOP;

 END_IF;

 -- process x

END LOOP;

If the user responds to the prompt with:

Input number of items, followed by values: 4 1.0 2.0 3.0 4.0

The data values will be processed as:

READ num = 4

READEL x = 1.0 1st pass of loop, i = 1;

READEL x = 2.0 2nd pass, i = 2;

READEL x = 3.0 3rd pass, i = 3;

READEL x = 4.0 4th pass, i = 4

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-11

Additional examples are given in READ examples.

8.6.4 Data input formatting

Formatting of inputs is provided by following the variable name with a colon and a whole
number with an optional decimal part, that is, :m.n (for example, :12.1) or :m (for example,
:8).

For the whole number part m:

• An m of zero (that is, 0.0 or 0.1) is the default situation and free format input applies.

• A positive m specifies a fixed-field of m characters, for example, var:4.0, means the
data for var is in the next field of 4 characters.

• A negative m (that is, :-1, :-1.0 or :-1.1) means free format, but only that line is to be
analyzed; the reading of a subsequent line is not permitted to satisfy the current list
item.

The decimal part n applies to character string input only, and indicates conversion to upper
case that is:

m.0 means no conversion of case (the default);

m.1 conversion to upper-case.

For fixed-field format, leading and trailing spaces are ignored for numerical and logical values,
and a field which comprises entirely of spaces is considered to give a data value of zero, or
false for logical items. Furthermore if a valid number, which is properly delimited, is
encountered before the end of the field, the remainder of the field is ignored.

For character string variables read in fixed format, the m input characters are assigned to the
string variable with truncation or space extension if the length of the variable string is different
from n. Note that spaces, commas, equals and quote characters are permitted in these
fixed format strings.

If an eol (end-of-line) is encountered during fixed-format reading when a new data field is
expected an error condition exists, and if present the IOSTAT variable will be set to indicate
the eol. If the IOSTAT variable is not present the program continues without reporting an
error. Any remaining input list items will be given their default values, that is, zero for
numbers, space for characters, and false for logical.

If the start of a fixed-format field exists, but there are less than n characters before an eol is
encountered, the input field is considered to be extended by spaces until it is n characters
long. This case is not considered an error, and the IOSTAT variable is not set to indicate eol.

Format specifiers to allow fixed format file records to be input, are illustrated by:

READ infile, i:2, j:3, x:6, c1(1..3):2, c2(1..3):4.1, ch:1.0;

where i and j are integers; x is real; c1 and c2 are one-dimension character arrays, or strings,
and ch is a character variable.

If the file input line is:

123456.7890abcdefgh

the format specifiers partition the line into fields which are illustrated by using a "|" character
to indicate the field boundaries:

|12|345|6.7890|ab|cdef|g|hijklm

This causes the following assignments:

i = 12

j = 345

x = 6.7890

c1(1..3) = "ab " -- field is space extended to fit c1

c2(1..3) = "CDE" -- field is truncated to fit c2,

 -- conversion to upper case with :4.1

ch = "g"

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-12

Note that the remainder of the input line, "hijklm", is not used.

A second example shows how a READ with a mixture of format specified input, and free
format input is processed. Consider the statement:

READ infile, i, j:3, x:6, c1(1..3):2.0, c2(1..3), c3:1.1;

and the input line:

61 123 4.56 abcde,x

using the "|" character to separate the fields gives:

 | 61 |123| 4.56 | a|bcde,|x|

 - :3 :6 :2.0 - :1.1 -- formats

Note that in the cases of free format the delimiting character (a space) is associated with the
field it is delimiting, and the next character processed is the character after the delimiter.

This input line causes the following assignments:

i = 61

j = 123

x = 4.56

c1(1..3) = " a " -- field restricted 2 characters and then

 -- space extended to fit c1(1..3)

c2(1..3) = "bcd" -- field is truncated to fit c2.

c3 = "X" -- conversion to upper case.

8.6.5 READ examples

The following two examples illustrate the flexibility of the READ and READEL statements, and
emphasise the detailed operation of the statements.

The following code counts the number of characters (trailing spaces ignored), and lines in a
file. It illustrates how a normal text file may be read character by character.

character: ch; FILE: infile;

INTEGER: err,count,lines;

....

OPEN infile, ...

....

count:= 0; -- no of characters

lines:= 0; -- no of lines

loop

 READ infile, IOSTAT=err;

 terminate err /= 0; -- End-of-file

 lines:= lines + 1;

 loop

 READEL ch:1, IOSTAT=err;

 terminate err /= 0; -- End-of-Line

 -- Count the characters

 count:= count + 1;

 end_loop;

end_loop;

Another example where the READEL statement is useful is when optional items may be
appended to an input line, for example, a section of a data file may be:

 1.0 1.2

 2.0 4.4 VOLT= 20.0

 3.0 9.6

 4.0 16.8 voltage=10

 5.0 26.0

...

A section of code to read the data follows:

REAL: x, y, Volt;

CHARACTER: ch;

INTEGER: err;

FILE: infile;

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-13

....

OPEN infile, ...

....

loop

 read infile,x,y,IOSTAT=err;

 terminate err /= 0; -- end-of-file? Exit loop.

-- Read rest of line and convert string to upper case, (:-1.1)

 readel ch:-1.1, IOSTAT=err;

-- If no string found ch will be set to " "

-- IOSTAT is unnecessary but can indicate string found, that

-- is, err=0

-- or err /= 0 if not found.

 if ch = "V" then

 -- A string starting with "V" or "v" found, note the whole

 -- string is processed and the "=" acts as a delimiter.

 -- A real value should now follow.

 readel Volt,IOSTAT=err;

 if err /= 0 then STOP; end_if; -- An error!

 end_if;

end_loop;

input_output

8.7 The PREPARE Statement
The PREPARE statement is designed to be used in the COMMUNICATION or STEP region
to record the results of a simulation for subsequent graphic analysis by the Post Run Analysis
menu option in ESL-Studio which opens ESL-Displays. It creates a non-text file (REWRITE
mode) over-writing any existing file of the same name. The output file is specified by a literal
string, a blank string (interpreted as file name of program with .dsp extension), or a character
variable. Note that the output cannot be directed to the terminal, and a file-specifier may not
be used. Typical PREPARE statements are:

PREPARE "example",t,x,y*z,array1,array2(2..4,2);

PREPARE " ",t,x,y,z;

PREPARE t,y/2,det(array1);

If no file extension is given, ESL will assume ".dsp". Note that any previous copy of the
prepare file will be overwritten by a new simulation run - this also applies when the program is
restarted from the INTERACT facility, ESL Run Control. The PREPARE list may include
numerical or logical variables or expressions, and also arrays and array expressions. Note
that a logical true is interpreted as 1.0, and false as zero.

Multiple PREPARE statements are permitted in a subprogram, and the contents of PREPARE
files may be converted into TABULATE file format using ESL-Displays.

It is possible to extend the PREPARE statement by including a title, subtitle and annotations
for each of the variables. The general format is shown:

PREPARE "file", "Title", "Subtitle",t,"(variable name)",

x,"(variable name)",array1(1..2,2);

These optional descriptions are stored in the prepare file and are accessible when the file is
processed by ESL-Displays.

The PREPARE statement is intended to be used like the TABULATE statement, and the two
are often complimentary with the TABULATE output being in text form, while the PREPARE
output is in a form suitable for graphical display. PREPARE statements appearing outside the
COMMUNICATION or STEP regions create a single data set (equivalent to one run).

Up to 100 variables can be included in a PREPARE statement.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-14

8.8 The PLOT Statement
A PLOT statement produces graphical output during the course of a simulation run, and is
normally placed in the STEP or COMMUNICATION region. The first execution draws the axis
and presents the headings, and subsequent executions plot the data points, joined by straight
lines. Real, integer and logical types may be plotted (logical types are treated as 1 for true, or
0). Multiple runs of the simulation may be displayed (the line from the last data point of the
previous run to the first point of the new run is suppressed).

If a PLOT statement is placed outside the STEP or COMMUNICATION regions it produces a
plot with symbols only, that is the data points are not joined by lines.

Multiple PLOT statements may be specified in a program - each will create its own plotting
window.

The general format for a PLOT statement is quite specific since it is necessary to define not
only the variables, but the scale of the axis:

PLOT "Optional title", x/10, y*1000 [abs(y2),y3],

tmin, tmax, y_min, y_max;

where:

x is the x-axis independent variable

y is the y-axis dependent variable

y2, y3 are additional y-axis variables

tmin is the start of the x-axis scale

tmax is the end of the x-axis scale

y_min is the start of the y-axis scale

y_max is the end of the y-axis scale

Several variables may be inserted between the optional "[]" brackets, after the first y-axis
variable. The variables may be scalars or scalar expressions of type real, integer or logical.
Note that axis limits may be general scalar expressions, and often the x-axis is defined as:

.... , 0, tfin, ...

8.9 The CLEAR_SCREEN statement
The CLEAR_SCREEN statement closes all open plot windows and prohibits further output
from currently active plot statements. Any new plot statements encountered after a clear
screen will open new plot windows.

8.10 The ESL-Displays program
The ESL-Displays program can be started either from the Simulate>Post Run Analysis…
menu on ESL-Studio or from a command prompt (terminal) …>esl_displays.

The main window is shown below. Its main function is to create graphical plots from Prepare
files (.dsp) that have been generated from ESL-Studio (using the ESL-SEC Runtime Displays
Prepare tab) or from Prepare statements in ESL textual programs. Other file formats are also
supported (.tab, .csv and .tsv) with a means of converting between formats.

Data from multiple source files can be displayed on the same graph and the specification of a
display can be saved as a .dis file for future use.

A detailed description and instructions for use will be found in the ESL-Studio Help Pages.

Chapter 8 Input-Output and File Handling

ESL Simulation Software - Development Guide 8-15

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-1

CHAPTER 9

9 ESL Segments
This section describes the ESL segment concept, and shows how this may be used for
distributed and embedded simulation.

Contents:

• Introduction

• Emulated Segment Operation

• Distributed Simulation Execution

• Embedded Segments

• Generation of Interface Modules for ESL Embedded Segments

9.1 Introduction
There are two types of segment in ESL - an embedded segment and a parallel segment.
An embedded segment is a form of ESL model that can be embedded in a C++ or FORTRAN
program. Parallel segments allow an ESL program to be partitioned into modules that can be
run concurrently.

ESL provides the means to:

• Emulate a multi-processor environment on a single computer, and execute parallel
segments within a single program (Emulated Segment Operation).

• Execute the simulation on multi-processors or a distributed network of processors,
with each segment being "remotely" executed by a separate process (Distributed
Simulation Execution).

• Embed the segment in a C++ or FORTRAN program, which calls the segment
simulation step-by-step (Embedded Segments).

Distributed Simulation

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-2

Embedded Simulation

The first part of this section introduces ESL segments and illustrates their use in an emulated
environment. Then consideration is given to how the segments may be executed using
separate processes, and the final section shows how segments may be embedded into a C++
or FORTRAN main program.

9.2 Emulated Segment Operation
Emulated segments allow the simulation performance of a true multi-processor machine to be
predicted, and they offer many advantages to the simulation engineer even in a conventional
processor environment. The separate processors are synchronised to exchange data with
other processors at fixed communication points, that is after fixed intervals of simulated time.

9.2.1 The multi-processor concept

The ESL program segment structure provides the means of partitioning a system specification
into a multi-processor environment. A complete dynamic system may be specified as being
partitioned into a model, which is regarded as the master segment, and one or more
segments. The model and each segment describe a subset of the complete system, and the
ESL program code for the model, and each segment, is considered to reside and be executed
on separate processors.

The underlying concept is that the simulation of the model partition is proceeding on one
processor at the same time as the simulation of each segment partition on other processors.
When the model and all segment simulations have completed a communication interval, data
is exchanged between the processors. Only after this data exchange, or synchronisation
point, is the simulation resumed in each segment and the model.

All communication is channelled through the master segment, the model, which has the ability
to communicate with all other segments. In the communication region the model receives
output data from all segments, and then after execution of the communication region the
model passes input data to each segment in turn and this causes the simulation to continue in
that segment.

With several segments it is possible to define different communication intervals for data
communication between the model and particular segments. The model works with the basic
communication interval, but it may communicate with a segment that has a communication
interval that is a multiple of the basic communication interval. This allows lower frequency
segments to have longer communication intervals, and this technique is described in more
detail later.

The concurrent execution of segment simulation is emulated by ESL, but the result is the
identical to that which would be obtained in a true multi-processor situation as described later
in this section. The Segment Emulation figure below shows the execution sequence. Note

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-3

how the segment simulation advances prior to that of the model, but the results are only
passed to the model during the model's communication region. This last point is illustrated
more clearly in the Segment Timing figure below.

9.2.2 Emulated segment

Segment timing

Note that the segment call may be conditional, that is the subject of an IF statement. Any
number of segments may be specified and run simultaneously. The call to the segment in the
communication region basically has the task of receiving the output argument values from the
segment following the segment's solution of the last communication interval. After the model's
communication region has been executed (and a segment call made), just prior to the model

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-4

starting the next communication interval, the segment input arguments are passed to the
segment, and it is instructed to solve the next communication interval.

An exception to this basic calling pattern is the first call to a segment in a run. In this case the
input arguments are passed to the segment during the communication region call, to enable
the segment to perform its initialisation and return values for its initial output arguments.

9.2.3 Basic segment programming

The program seg1.esl, available in the ESL library and presented below, is a simple example
which introduces the basic programming concept and the underlying segment operation.

As with all ESL modules the segment must be specified, or declared, before its invocation in
the model. The structure of the segment code is the same as that for a model, except that it
cannot have a terminal region.

The initial region of the segment is used to set the simulation control variables for that
segment. That is, the communication interval (CINT), simulation start and finish times
(TSTART and TFIN) must be set to define the basic simulation to be performed by the
segment. The integration algorithm (ALGO), number of sub-steps to complete a
communication interval (NSTEP) and the error specifications (INTERR and DISERR) should
also be set. The default values for simulation control variables are inherited from the model in
an emulated segment, but for a remotely executed segment they are the standard defaults.

--SEG1 basic segment example

STUDY

 INCLUDE "realpl";

 INCLUDE "integ";

 INCLUDE "stepp";

--

 SEGMENT SEG(REAL: segout:= REAL: segin,Taus);

 INITIAL

 CINT:= 0.5; NSTEP:= 10; TFIN:= 16.0; ALGO:= RK4;

 DYNAMIC

 segout:= REALPL(0.0,Taus,segin);

 STEP

 PREPARE "seg1s",T,segout,segin;

--

 END SEG;

--

 MODEL MODSEG(REAL: y:= REAL: Tau);

 REAL: x,xf,in;

 REAL: Tauf/0.6/;

 LOGICAL: log;

 INITIAL

 x:= 0.0;

 DYNAMIC

 log:= STEPP(6.0);

 in:= if log then 0.0 else 1.0;

 y:= INTEG(0.0,(in-y)/Tau);

 xf:= REALPL(0.0,Tauf,x);

 STEP

 PLOT T,y,0,TFIN,0,1;

 PREPARE "seg1m",T,y,x,xf;

 COMMUNICATION

-- Segment invocation

 SEG(x:= y,Tauf);

--

 END MODSEG;

-- EXPERIMENT

 REAL: y,Tau/2.0/;

 CINT:= 0.5; NSTEP:= 10; TFIN:= 16.0; ALGO:= RK5;

-- Model invocation

 MODSEG(y:= Tau);

--

END_STUDY

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-5

Segmentation example

The simulation control (reserved) variables for each segment are unique, and the model and
other segments may select different values. ESL maintains a separate set of simulation
control variables for each segment. Care must be taken, however, to ensure that the
segment's communication interval is an integer multiple of that set in the model, and that it is
consistent with the frequency at which the segment is invoked from the model.

In contrast, the simulation control variables for the model either may be set in the experiment
or the model's initial region. The model or experiment has the task of setting the basic
communication interval (CINT). This defines the highest frequency at which inter-segment
communication can take place. The final time (TFIN) should be set by the model, and the
simulation run may also be stopped prematurely by TERMINATE statements in any segment.

The segment invocation must always be in the model communication region and the calling
statement has the same form as a model invocation in the experiment. Each segment may be
called once only during a pass of the communication region. By the use of conditional IF
statements a segment may be invoked every nth communication interval pass rather than
each pass. In this case the segment must have a communication interval set to (n * CINT).

Basic segment example

Examination of the example reveals that the model solves a subsystem which produces the
result (y) of an exponential response, first increasing from zero and then, at time 6.0,
decaying back to zero. Note the use of INCLUDE statements to access the library submodels
REALPL (real-pole), INTEG (integrator) and STEPP (step input at T = 6.0).

The value of y is passed to the segment SEG as an input argument. The output from the
segment invocation is x, which is also used in the model code of the dynamic region.
Therefore x must be initialised prior to entering the dynamic region for the first time. This
initialisation is only effective during model initialisation and is correctly updated by the
segment invocation before the simulation commences.

The segment takes y as its input SEGIN and subjects this to filtering by a real-pole, or lag, to
produce the segment output (SEGOUT).

The model receives the segment output in its variable x which it filters by a real-pole to
produce xf.

Results from the Model shows the results from the model's point of view. The output from the
segment (x) is updated at each communication interval and therefore has the "staircase"
characteristic shown in the graph.

Results from the Segment shows the results from the segment's point of view. The input to
the segment SEGIN is updated at each communication interval, and it also has the "staircase"
characteristic.

Understanding the segment results

This example clearly shows the fundamental characteristics of parallel processing. That is,
the discretisation of data communicated between processors, and the lag, or delay, inherent
in this process. In effect, the example passes the value of y to a segment which simply
returns it. A comparison of y and xf shows the effect of communication of data to a segment,
and then the communication of the segment response back to the model.

Inter segment communication errors

During inter-segment communication there is both a phase and amplitude error which is
dependent on the communication interval, and data is available only at discrete intervals in
time which results in a stepped or staircase waveform. If proper account is taken of this
fundamental operation, segmentation can be used to produce very efficient results even on a
single processor segment emulation.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-6

Results from the model

Results from the segment

In many simulations, the errors introduced by inter-segment communications are small and do
not materially change the results of the simulation. In other cases, however, the errors have a
critical influence on the simulation and action must be taken to reduce or eliminate the errors.
In order for a user to determine the problems associated with a particular system it is
advisable to be able to compare segmented results with known correct solutions. In other
words, it is prudent to first simulate the basic system without using segments to produce a set
of "correct" results. These results provide an invaluable source of data to validate the
segmented results.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-7

A system is often segmented to produce a fast simulation time in a production environment,
where the basic simulation is to be repeated many times. In order to gain this speed
advantage with multi-processors, or even with an emulation, without sacrificing accuracy it is
necessary to develop the segmented simulation with great care. It is surprisingly easy to
produce a segmented simulation which is both slower and less accurate than its
unsegmented equivalent.

Choice of communication interval

The objective is to select the largest communication interval (CINT), to minimise the overhead
caused by the number of inter-segment communication, which still gives satisfactory results.

The communication interval, however, determines the communication bandwidth, which
together with the frequency (or rate of change) of data to be communicated determines the
error introduced. The selection of the communication interval should be based on the highest
frequency to be communicated between segments. If Wh is the highest frequency
communicated between segments, and Tp the corresponding period, then a communication
interval of:

CINT = Tp/36 -- where Tp = 2*pi/Wh

will introduce a phase-lag of about 10 degrees as the data is transferred between segments.
This selection of communication interval, possibly used in connection with appropriate
correction (see below), should prove adequate in most cases.

It should be noted that higher frequencies of communicated data require smaller
communication intervals, and hence increased communication overhead. Furthermore the
smaller communication interval may force integration in one or more segments to use
inefficiently small step-lengths. This can cause a segmented solution to run slower than the
unsegmented program. Therefore the manner in which a system is partitioned may be critical.

Partitioning a system into segments

The system should be partitioned into segments keeping in mind the following guidelines:

• Partition the system at natural boundaries - this often helps to satisfy the following
points. If the system includes a digital control or computer control section, this is often
an excellent choice for a segment. Function generation is also a good candidate.

• Minimise the interconnection between segments.

• Minimise the frequency of data communicated between segments.

• The best candidates for segmentation are often those parts of a system which have a
different range of frequencies compared with the rest of the system. In the case of a
low frequency segment, which also communicates with the remainder of the system
at a low frequency, a much larger integration step-length may be used in the
segment. On the other hand, a high frequency segment, which communicates with
the remainder of the system at low frequency, gives a similar advantage. In this case
the remainder of the system may use the larger integration step-length.

• Produce an equitable balance in computer power required to simulate each segment,
for example, a similar number of differential equations. The final simulation execution
time will depend on the time taken to execute the most complex segment.

9.3 Distributed Simulation Execution
This section describes how the simple ESL example, seg1.esl shown above, may be
executed on a network of distributed processors. Differences in configuration and execution
for Linux and MS Windows platforms are described. A sensible starting point in the generation
of a distributed computer simulation is to validate the simulation with a single process using
ESL's segment emulation facilities. This process was described in the first part of the section.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-8

9.3.1 Preparing remote segment

The next step is to separate the segment code which is to be executed as a separate process
to the experiment and model. For example, create the file remseg.esl (from original
seg1.esl):

REMOTE

 INCLUDE "realpl";

--

 SEGMENT SEG(REAL: segout:= REAL: segin,Taus);

 INITIAL

 CINT:= 0.5; NSTEP:= 10; TFIN:= 16.0; ALGO:= RK4;

 DYNAMIC

 segout:= REALPL(0.0,Taus,segin);

 STEP

 PREPARE "seg1s",T,segout,segin;

--

 END SEG;

The syntax for a remote segment specifies that there should be no model, no experiment and
one and only one SEGMENT. Note the program starts with the keyword REMOTE, and there
is no END_STUDY. Submodels, or procedures, which are needed by the segment should be
declared prior to the segment in the normal ESL fashion. In this case one submodel
"REALPL", from the library is required.

This file should be moved to the processor where it is to be remotely executed. Note ESL
must be established on that processor and the environmental variables ESLPROG and
ESLLIB should be set. Then the one of the following commands may be issued to build the
executable:

esl -cccl remseg - to build via C++ translation

esl -cfl remseg - to build via FORTRAN translation

The remote program remseg is now ready.

9.3.2 Main simulation or client

Now create the ESL (model) program which will invoke the remote segment (remseg). First
copy seg1.esl to new file main_mod.esl, and then modify the segment declaration by adding
the word EXTERNAL before the semi-colon that is:

SEGMENT SEG(REAL: segout:= REAL: segin,Taus) EXTERNAL;

This causes the ESL compiler to ignore the body of the segment, which may be removed if
desired. In addition, the code normally generated to emulate the segment is replaced by code
to invoke and execute the segment remotely. The added code maintains appropriate
synchronised communications with the remote segment.

An executable program is generated by:

esl -cccl main_mod - for a C++ build

esl -cfl main_mod - for a FORTRAN build

We now have a client (main_mod) and a server (remseg) executable programs.

Note: The model (master segment) and all remote segments must be built with the same
precision (single or double). We recommend using either C++ or FORTRAN builds for all
segments.

9.3.3 Configuration considerations

In order to run the newly created segment on a remote machine, the user must have certain
capabilities and have configured certain files:

• The user must be able to launch and run a process on the remote machine using one
of the available protocols (rsh, ssh and esl - see Launching remote segment).

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-9

• Where ESL has not been installed and setup on the remote machine (which does not
apply for the esl protocol), the script esl_attach (esl_attach.bat for MS Windows) must
be copied to the remote machine and made accessible to the user (e.g. by putting it
on the PATH). This script is provided in the ESL executable directory (environment
variable ESLPROG).

• The remote segment program and files must be accessible on the remote machine,
either by creating the program directly on the remote machine or creating it on the
same kind of machine and copying the file to the remote machine.

9.3.4 Segment location file

A segment location file must be created on the local machine. This is used to associate a
segment name with a host and executable file or command. The file must be given the same
prefix as the application with an extension of ".rem" (for example, if an ESL program
main_mod.esl produces an executable main_mod then the segment location file will be
named main_mod.rem). This file will contain a number of lines (one for each segment) each
with the format:

segment_name<Spaces>remote_host_reference<Spaces>remote_simulation_command

The segment_name is the name as given in the main ESL model.

The remote_host_reference has the form:

[protocol ':'] [remote_user '@'] remote_host_name

The protocol may be one of:

rsh - the remote simulation will be launched via the rsh protocol.
 Note that this is the default protocol and may be omitted.

ssh - the remote simulation will be launched via the ssh protocol.

esl - the remote simulation will be launched via the custom ESL protocol.
 Note that this requires the ESL Launcher - see ESL Launcher below.

The remote_user is for the rsh & ssh protocols (if required). This will default to the same
name as the user on the local host so is generally not required.

Note that there is no provision for sending a password across the network, so the appropriate
protocol must be setup on the remote host to authorise the remote_user so that a password is
not needed.

The rest of the line in the segment location file is the remote_simulation_command, which
may include spaces. It is the normal command that will launch an ESL remote segment
simulation - typically (for efficiency) a pre-built executable - but may be, for instance, an ESL
command.

Note that it is recommended that full paths for executables and files should be given, but if
relative paths are given this may depend on the protocol and method of launching the remote
simulation.

For example, in a Linux environment using the rsh protocol, the line to specify that segment
SEG is to be run on a machine with a hostname of LIN1 using executable program remseg
would be:

SEG LIN1 remseg

This assumes that remseg is present in the users home directory on the machine LIN1. The
filename may also be specified as a full tree filename, for example:

SEG LIN1 /home/LIN1/user_name/esl/segments/remseg

The filename may specify a shell script, which then invokes the ESL remote segment; this
option allows environment variables to be set, or the current directory to be changed, before
starting the remote segment. ESL run-time parameters may be specified following the
command. For example, in an MS Windows environment, the following .rem file specifies that

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-10

the remote segment, remote.exe, is run as: SEG1, SEG2, SEG3 and SEG4 on computers
with host names: host1, host2, host3 and host4 using a different driver file in each case.

SEG1 host1 remote -drv driver1

SEG2 host2 remote -drv driver2

SEG3 host3 remote -drv driver3

SEG4 host4 remote -drv driver4

Note that in this case, each driver file, must be present on the specified computer along with a
copy of remote.exe.

Remote segments need not be run on remote computers. There is sometimes an advantage
in running one or more remote segments as separate processes on the local computer. In this
case the host name should be that of the local computer. Alternatively, the local computer will
be assumed if a "-" is substituted for the host name. If, in the previous example, SEG1 and
SEG2 were to run on the local computer, the .rem file would be:

SEG1 - remote -drv driver1

SEG2 - remote -drv driver2

SEG3 host3 remote -drv driver3

SEG4 host4 remote -drv driver4

9.3.5 Executing distributed simulation

Start the main ESL program (main_mod). This will attempt to start processes for any external
segments which have been declared in the ESL program (that is, SEG). This is achieved by
reading the main_mod.rem file for information on the required location of each segment and
starting each remote process using the rsh command. Each remote process will connect
back to the main model and a message confirming the successful establishment of the
communications link will be displayed. The ESL model and segments will now run; on
completion the model will instruct the segments to exit. If either program terminates
abnormally (for example, CTRL-C is typed) then the other program will report an error and
exit.

The results obtained should be identical to those for the emulated segment.

The Remote Segment Call and Remote Segment Execution figures below show the execution
sequence for a remote segment call.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-11

9.3.6 Launching remote segment

ESL supports three protocols for launching a remote segment simulation program on a
remote host. The original (default), rsh and the more secure ssh protocols which allow a
process to started on a remote host in the context of a user of the remote host.

Note that the rsh command was supported on versions of Windows below Vista but required
the installation of a special rshd server. This protocol is no longer always supported on Linux
platforms (depending on the distro).

Note that the ssh command is well supported on Linux but is not readily available (in a
suitable command format) on Windows.

The installation and configuration of the rsh & ssh protocols, which are standards, is not
covered in this document.

The third protocol supported is a custom esl protocol that requires the ESL Launcher service
program.

9.3.7 ESL Launcher

The ESL Launcher service is available in ESL-Pro, which must be fully authorised (i.e. not
authorised by being in the evaluation period) on both the local host and the remote host. It is
provided by the program esl_launcher (for the remote host) and there is a utility program
ping_esl_launcher which may be used on the local host to check for connectivity.

This custom secure protocol runs over a direct socket TCP/IP protocol, using default port
3377, which may be changed by an environment variable ESL_LAUNCHER_PORT (which
has to be the same on both the local and remote hosts).

Note that the remote host firewall may have to have been set to permit access to the port for
the ESL Launcher program.

The esl_launcher program

This program is run on the command line and is used in the following manner:

Usage: esl_launcher ([-h] | [-q] [-d])

Waits for a command to launch an ESL remote segment.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-12

Options:

 -h - print this usage message (and exit)

 -q - quiet - no direct output while running (launched programs may

 produce output)

 -d - diagnostics - output network error diagnostics

To use this protocol, you need to logon to the remote host computer (which needs to have
ESL-Pro installed and authorised). Open a command prompt (terminal) window and (if relative
paths are being used in the segment location file on the local host) change to an appropriate
directory.

When you execute the program it will wait for valid launch commands from the local host. Any
text output from remote segments will appear in the command prompt (terminal) window. The
program runs with the permissions of the logged on user.

The program logs connections and other information (including diagnostics) on a log file - for
Windows on the logged on (remote) user's %TEMP%\ESL\esl_launcher.log and for Linux on
~/.esl_launcher.log.

The program can be terminated by Ctrl-C in the command prompt (terminal) window, or
simply by closing the window.

We recommend that the ESL Launcher service should be terminated when no longer needed
for launching remote segment simulation.

The ping_esl_launcher program

This program is run on the command line and is used in the following manner:

Usage: ping_esl_launcher ([-h] | [-q] | [-d]) <remote-host> [<command>]

Sends a command to an ESL Launcher service.

Options:

 -h - print this usage message (and exit)

 -q - quiet - no direct output

 -d - diagnostics - output network error diagnostics

 <remote-host> - name (or ip-address) of host computer with the ESL

 Launcher service

 <command> may be:

 “ping” - check if the ESL Launcher service is available (default

 command)

 “close” - close the ESL Launcher service

This can be used to check if the remote host's ESL Launcher is available.

In addition, the close command can be used to terminate the ESL Launcher service on the
remote host from the local host.

9.3.8 Running remote simulation

Commands which cause ESL to create a window, such as PLOT, will work normally and the
segment will create a window on the remote machine. For Linux, an accessible X-Window
server must be running on the remote machine. Output from a remote segment will be
directed to this window if available otherwise it will be directed to standard output. File
creation commands such as PREPARE will create files in the current directory which will
normally be the home directory.

Remote segments should not attempt to read from the keyboard, unless the ESL
screen/window is activated (not the operating system screen). Remote segments will run
normally when the model is invoked using the ESL interpreter. During an interactive
debugging session, the segment will wait for the model to resume execution or to be re-
started. Remote segments will be shutdown by the model on normal termination, and should
detect an abnormal termination of the model. Several remote segments may be invoked from
one client, and all processes may be on different processors, or in fact all on a single
processor.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-13

9.3.9 Conclusions

Only examples that lend themselves to simulation by the segment approach will benefit from
distributed processing. The speed of calculation is determined by the process that requires
the longest execution time to simulate a single frame. Therefore in cases where different
speed processors are involved, it is important to put the slowest process on the fastest
processor. The best results are obtained for simulations that require considerable
computation per frame, and the work is evenly divided between the processes.

Note that distributed processing is not only used to speed a simulation, but also to introduce:
real-time synchronisation; human or hardware in the loop; special animation or display
processes; non ESL software which conforms to the ESL segment protocol, that is,
FORTRAN, C or C++.

Note that REMOTE segments may be called from the communication region of either a model
or an embedded segment.

ESL provides the interface (segment protocol) to exploit distributed multi-process simulation.

9.4 Embedded Segments
Facilities are provided for embedding an ESL simulation within a C++ or FORTRAN main
program, and invoking and controlling the simulation from the C++ or FORTRAN code. In
addition, ESL programs may invoke non-ESL routines written in FORTRAN, C or C++, by
specifying EXTERNAL routines (External Procedures).

An ESL segment and its supporting submodels may be executed in a step-by-step style, that
is, the simulation may be advanced a frame (CINT) at a time, for example:

• Simulation input is specified.

• The simulation advanced by one frame (CINT).

• The simulation results returned, the C++/FORTRAN program may now do other
operations before advancing the simulation over the next frame.

The main program - ESL data communication is achieved by means of C++ class member
variables or FORTRAN common variables.

In the case of C++ embedded programs when running MS Windows, ESL provides a facility
for generating interface modules such as dynamic link libraries (DLL's), ActiveX COM objects
and .NET Framework assemblies, which can be used directly in Microsoft Visual C++ or C#
(.NET) projects.

9.4.1 Embedded simulation using FORTRAN

To illustrate the ESL embedded simulation, let us consider a simple example. First the
simulation should be expressed as a segment within an ESL EMBEDDED program, for
example, in a file embseg.esl:

 embedded

 package esl_io;

 real: out,inp,outo/0.0/,tau/0.6/;

 end esl_io;

 --

 segment embed;

 use esl_io;

 real: y;

 initial

 y:=outo;

 dynamic

 y':=-(y-inp)/tau;

 communication

 out:=y;

 tabulate " ",t,inp,out;

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-14

 prepare " ",t,inp,out;

 end embed;

This is a very simple system that subjects the input inp to a first-order lag to produce the
output out. The initial value of output is outo. Note the information to be communicated to the
segment is specified in the package esl_io, which contains the input, output, initial condition
and also the time-constant of the filter tau. An embedded program starts with the keyword
EMBEDDED, it must have one, and only one, segment, and the segment must not have
arguments (data is communicated by packages). The program must not contain a model, an
experiment, or an END_STUDY statement. Note the output out should only be set in the
COMMUNICATION, not the DYNAMIC, region.

In this example we have used the ESL TABULATE and PREPARE statements to give post-
mortem information.

Before reaching this stage it is advisable to have tested the segment code with a model
emulating the FORTRAN program. The study embemu.esl was used for this task, that is:

 study

 package esl_io;

 real: out,inp,outo/0.0/,tau/0.6/;

 end esl_io;

 --

 segment embed;

 use esl_io;

 real: y;

 initial

 y:=outo;

 dynamic

 y':=-(y-inp)/tau;

 communication

 out:=y;

 tabulate " ",t,inp,out;

 prepare " ",t,inp,out;

 end embed;

 model mod;

 real: x,y;

 use esl_io;

 constant real: w/1.0/;

 initial

 y:=outo;

 dynamic

 x:= sin(w*t);

 y':=-(y-x)/tau;

 communication

 inp:=x;

 embed;

 prepare "nonemb",t,x,y,out;

 plot t,y,[out],0,tfin,-1,1;

 end mod;

 -- experiment

 cint:=0.2;

 algo:=2;

 mod;

 end_study

This study actually duplicates the required simulation in the model, and passes the same
inputs to the segment for the segmented solution. The duplication was performed to ensure
that the segmentation approach did not introduce unacceptable errors (see the first part of
this section).

With the segment tested we may now call it from a FORTRAN program with a high degree of
confidence. First create FORTRAN subroutines corresponding to embseg.esl by using the
ESL compiler and Translator, that is, embseg.f (or embseg.f).

The test program embprg.f (or embprg.f for MS Windows systems) illustrates how the main
program controls the simulation.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-15

* embprg.f/for

*

PROGRAM MAIN

INCLUDE 'eslcxx.dat'

* Reserved common extracted from Translated Embedded program

* embseg.esl.

* COMMON must be identical to that generated by current ESL Translator.

REAL T,TSTART,TFIN,CINT,DISERR,INTERR,OP_STP

INTEGER ALGO,NSTEP,GE_EUL,WKRNT,WKSIM,IEX_CM,WK$PAR,DIS_ST,

 *WKMOD,WKY0,WKYMX,WKCOM,MD$SYM

COMMON/RESERVED/T,TSTART,TFIN,CINT,DISERR,INTERR,OP_STP,ALGO,NSTEP

 *,GE_EUL,WKRNT,WKSIM,IEX_CM,WKPAR,DIS_ST,WKMOD,WK$Y0,WK$YMX,

 *WKCOM,MDSYM,IF$1(31)

SAVE /RESERVED/

* ESL_IO common extracted from Translated Embedded program embseg.esl

REAL OUT,INP,OUTO,TAU

COMMON/ESL_IO/OUT,INP,OUTO,TAU

SAVE /ESL_IO/

REAL W

INTEGER STATUS

EXTERNAL EXP$MN,FINX

*

* Initialise embedded software

CALL EXP$MN(EXSTRT,STATUS)

* After initialisation of embedded esl, the RESERVED and EMBED common

* blocks may be freely changed, NOT before.

* We shall change: finish time, CINT and ALGO

* Mark above store allocated in setup

CALL MARKX

TFIN=8.0

CINT=0.2

ALGO=2

PRINT *,' '

PRINT *,'1st run with sin(t) input, CINT=',CINT,' and TAU=',TAU

PRINT *,' '

W=1.0

* Set input for simulation initialisation

INP=SIN(W*T)

* Now initialise the simulation

CALL EXP$MN(EXINIT,STATUS)

* Start simulation loop

10 CONTINUE

* Set input for simulation

IN=SIN(W*T)

* Output results

print *,'Time,inp,out',T,INP,OUT

* Have we done

IF(T.LE.14.0)THEN

* Advance simulation by one frame

 CALL EXP$MN(EXSIM,STATUS)

 IF(STATUS.EQ.CXOK)THEN

* Simulation completed task

 GOTO 10

 ELSEIF(STATUS.EQ.CXTERM)THEN

* Simulation terminated normally, but ignore

 GOTO 10

 ELSE

* Something went wrong

 STOP

 ENDIF

ENDIF

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-16

*

* Lets do another run

* We shall change: finish time, and time constant.

TFIN=12.0

TAU=2.4

PRINT *,' '

PRINT *,'Second run with step input TFIN=',TFIN,' and TAU=',TAU

PRINT *,' '

* Set input for simulation initialisation

INP=0

* Change initial start value

OUTO=0.1

* Now initialise the simulation

CALL EXP$MN(EXINIT,STATUS)

* Start simulation loop

20 CONTINUE

* Set input for simulation

INP=1.0

* Output results

print *,'Time,inp,out',T,INP,OUT

* Have we done

IF(STATUS.EQ.CXOK)THEN

* Advance simulation by one frame

 CALL EXP$MN(EXSIM,STATUS)

 GOTO 20

ELSEIF(STATUS.EQ.CXTERM)THEN

* Simulation terminated normally

 PRINT *,'Run terminated by embedded simulation'

ELSE

* Something went wrong

 PRINT *, 'Run aborted by embedded simulation'

ENDIF

* Close simulation

CALL EXP$MN(EXFIN,STATUS)

END

The FORTRAN program performs two complete simulations; in the first the modelled system
is subject to a sine wave input, while in the second to a step input. Let us consider various
aspects of this program.

Program notes

The include file eslcxx.dat is distributed with ESL in the ESL executable directory
(environment variable ESLPROG). It defines enumeration constants or keys which define
simulation functions, and status return values. In this example it is assumed it has been
copied to the directory containing the example code.

The COMMON blocks, RESERVED and ESL_IO, have been extracted from embseg.f (or
embseg.f), and provide the means for communicating data between the FORTRAN main
program and the simulation. Note that it is important to copy the COMMON blocks code from
the generated FORTRAN code (rather than typing it in by hand) to avoid introducing errors.

The simulation run-time support routines must be initialised prior to any other simulation call
by:

CALL EXP$MN(EXSTRT,STATUS)

This call should be made once only, and it also has the function of initialising reserved
variables to their default values, and package variables where initial values are specified, for
example, OUTO and TAU.

Prior to a simulation the simulation COMMON variables must be set appropriately. In
particular the input to the segment must be set (INP), and any initial conditions (OUTO). Note
that the segment initial region may be used to set CINT, ALGO etc, in which case the
segment code will take precedence over COMMON data set at this point.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-17

The simulation must be initialised (the segment initial region, dynamic and communication
regions are executed) prior to starting the simulation run. This is achieved by the FORTRAN
statement:

CALL EXP$MN(EXINIT,STATUS)

which returns output (OUT) resulting from the initialisation.

At this point the simulation loop is constructed:

• This starts with setting COMMON variables defining simulation inputs (IN).

• Output is now consistent, that is the output (OUT) corresponds to the simulation time
(T), and the input (INP) is the value of simulation input at the same simulation time.
This is therefore a good point to output any results.

• The simulation is advanced by one frame (CINT) by: CALL
EXP$MN(EXSIM,STATUS) this integrates the solution over a communication interval
and finally executes the segment communication region. Time (T) has been
advanced and the simulation output (OUT) now corresponds to time T.

• The status variable (STATUS) is set: CXOK no problems; CXTERM simulation has
been completed normally, that is, T has advanced to TFIN. This may be safely
ignored, but if an explicit TERMINATE statement was used in the ESL code then the
simulation must not be continued. CXSTOP means a severe error, possibly
integration failure has occurred (this cannot occur with the explicit integration
routines). More serious problems cause an error message and the program is
stopped by ESL.

• After advancing the simulation, the FORTRAN program may perform other tasks
using the result from the simulation. It is also the point where the input to the next
frame may be computed from other processes, or even obtained from hardware or a
user interface.

The example shows two styles of simulation loop.

A further simulation may be performed by repeating the above steps, except the EXSTRT
call. The example shows such a second simulation run. Note that ESL treats this second run
correctly, for example, prepare files will contain two separate sets of results.

Terminate the simulation runs by:

CALL EXP$MN(EXFIN,STATUS)

which closes any open ESL files.

ESL/FORTRAN conflicts

Problems may arise due to conflicts between the FORTRAN main program and the ESL
generated FORTRAN; the following indicates how to avoid possible problems.

Subroutine and common names

The names of ESL generated subroutines, functions and common blocks are based on the
user's ESL code and care should be taken to ensure they do not conflict with names in the
calling FORTRAN program. The ESL run-time support library has many routines and several
common blocks. These names are always six or less characters and end with the letter X.
ESL also generates names containing a $ (or other system dependent special FORTRAN
identifier characters). Avoiding names for subroutines and common blocks which may clash
with ESL names will prevent problems.

Input/Output

An ESL program may open a number of FORTRAN file channels for PREPARE, TABULATE
and other user specified file operations. ESL can possibly open FORTRAN file channels 7 to
27, and it is advised that these channels are not used by the FORTRAN calling program.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-18

Embedded ESL for graphics

A FORTRAN program which needs graphics capability may use the ESL plot and prepare
facilities, by using a special embedded segment. The segment could have a empty dynamic
region (just the keyword DYNAMIC), and specify PLOT or PREPARE in the communication
region.

Building embedded program

The following sequence of commands builds the embedded simulation study:

esl -c embseg

esl -tf embseg

esl -f embseg

The file embseg.f is produced from the above; the FORTRAN program is compiled with:

esl -f embprg

and the embedded ESL and the FORTRAN are linked by:

esl -fl embprg embseg

this produces the executable program embprg, which may be executed by:

esl -x embprg

or by simply:

embprg (or ./embprg)

The result of running embprg is to produce terminal tabulation from the FORTRAN program
(embprg.f or .f), and a prepare file embseg.dsp, and tabulate file embseg.tab from the ESL
segment (embseg.esl).

All programs illustrated in this section are provided in the ESL library directory.

9.4.2 Embedded simulation using C++

Using the same ESL example as was used to illustrate FORTRAN embedding, the following
esl commands:

esl -c embseg

esl -tcc embseg

generate the C++ source file embseg.cpp, which corresponds to the embedded simulation.

C++ Code Using Embedded ESL

The C++ main program in file embprg_cpp.cpp, in the ESL examples directory illustrates how
the embedded simulation is called from the C++ main program. That is:

// embprg_cpp.cpp/cpp

#include <math.h>

#include <stdio.h>

#include "rt_sup.h"

class s__simulation;

// Class Esl_io obtained from embseg.cpp/cpp

class Esl_io__c

{

 public:

 real Out,Inp,Outo,Tau;

 void set__up(void);

 public:

 void setSimulation(s__simulation* s);

 s__simulation* s_;

};

// Class Embed obtained from embseg.cpp/cpp

class Embed: public s__model

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-19

{

 private:

 real Y,Y_;

 int W__1,W__2,W__3,W__4;

 public:

 Embed(void);

 void e__1(void);

 void e__2(void);

 void e__3(void);

 public:

 void setSimulation(s__simulation* s);

 s__simulation* s_;

};

// Simulation context obtained from embseg.cpp/cpp

class s__simulation : public s__simulation_c

{

 public:

 s__simulation();

 //Experiment

 void Exp_mn(int W__1, int &W__2);

 // External classes

 Esl_io__c Esl_io;

 Embed x__1;

 public:

 s__simulation* s_;

};

int main(int argc, char *argv[])

{

 real w = 1.0;

 int status;

 s__simulation* s = new s__simulation(); // Simulation context.

 // Initialise embedded software

 s->Exp_mn(EXSTRT, status);

 // We shall change: finish time, CINT and ALGO

 s->Reserved.Tfin = 8.0;

 s->Reserved.Cint = 0.2;

 s->Reserved.Algo = 2;

 printf(

 "\nFirst run with sin(t) input, CINT=%f and TAU=%f\n\n",

 s->Reserved.Cint, s->Esl_io.Tau);

 // Set input for simulation initialisation

 s->Esl_io.Inp = sin(w * s->Reserved.T);

 // Now initialise the simulation

 s->Exp_mn(EXINIT, status);

 // Start simulation loop

 int looping = 1;

 while(looping)

 {

 // Set input for simulation

 s->Esl_io.Inp = sin(w * s->Reserved.T);

 // Output results

 printf("Time,in,out: %g %g %g\n",

 s->Reserved.T, s->Esl_io.Inp, s->Esl_io.Out);

 // Have we done

 if(s->Reserved.T >= 14.0)

 looping = 0;

 else

 {

 // Advance simulation by one frame

 s->Exp_mn(EXSIM, status);

 if(status == CXOK)

 ; // Simulation completed task

 else if(status == CXTERM)

 ; // Simulation terminated normally, but ignore

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-20

 else

 // Something went wrong

 return 1;

 }

 }

 // Lets do another run

 // We shall change: finish time, and time constant.

 s->Reserved.Tfin = 12.0;

 s->Esl_io.Tau = 2.4;

 printf(

 "\nSecond run with step input TFIN=%g and TAU=%g\n\n",

 s->Reserved.Tfin, s->Esl_io.Tau);

 // Set input for simulation initialisation

 s->Esl_io.Inp = 0;

 // Change initial start value

 s->Esl_io.Outo = 0.1;

 // Now initialise the simulation

 s->Exp_mn(EXINIT, status);

 // Start simulation loop

 looping = 1;

 while(looping)

 {

 // Set input for simulation

 s->Esl_io.Inp = 1.0;

 // Output results

 printf("Time,in,out: %g %g %g\n",

 s->Reserved.T, s->Esl_io.Inp, s->Esl_io.Out);

 if(status == CXOK)

 {

 // Advance simulation by one frame

 s->Exp_mn(EXSIM, status);

 }

 else if(status == CXTERM)

 {

 // Simulation terminated normally

 printf("Run terminated by embedded simulation\n");

 looping= 0;

 }

 else

 {

 // Something went wrong

 printf("Run aborted by embedded simulation\n");

 looping = 0;

 }

 }

 // Close simulation

 s->Exp_mn(EXFIN, status);

 return 0;

}

Program Notes

The C++ main program performs two complete simulations. In the first the modelled system is
subject to a sinusoidal input, and in the second to a step-input.

The fourth line specifies include file rt_sup.h, which is found in the ESL executable directory
(environment variable ESLPROG). This include path is automatically provided if the esl
command is used for C++ compilation. This file (indirectly - in distsim.h) includes a
specification of keywords used to define the interface to the embedded segment.

The ESL segment embed and package esl_io are converted into the C++ classes Embed
and Esl_io__c, and users must extract these definitions from the C++ file embseg.cpp.

The embedded segment has a "simulation context", the class s__simulation, which must
also be copied from the generated C++ file. The simulation context instance is created in the
line:

s__simulation* s = new s__simulation(); // Simulation context.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-21

This feature allows the same embedded segment to be used twice by creating two different
simulation contexts for different versions of the embedded segment. The example
sineseg.esl with its program file sineprg_cpp.cpp illustrates this use (and the file
sineprg_clr_cs.cs illustrates its use when the segment has been converted to a C#
assembly).

The interface to the simulation is provided by simulation context's method Exp_mn, for
example:

s->Exp_mn(EXxxx,status);

where EXxxx is a keyword (declared through rt_sup.h) to specify operation, ie:

• EXSTRT - prepare embedded code for use, may only be used once at program start.

• EXINIT - initialise for single simulation run.

• EXSIM - perform one frame (CINT) of simulation.

• EXFIN - close down simulation.

The value returned in status indicates the success, or otherwise, of the operation. The status
values are given through rt_sup.h, and have the following meaning:

• CXOK - no problems.

• CXTERM - simulation completed normally, that is T has advanced to TFIN.

• CXSTOP - severe error encountered.

The input/output used is that specified in the Standard C Library. Note that ESL generated
C++ code also uses this library for its input/output.

The two C++ files, embprg_cpp.cpp and embseg.cpp are compiled, linked, and executed by
the following esl commands:

-- Copy $ESLLIB/embprg_cpp.cpp to current directory.

esl -cc embprg_cpp embseg

esl -ccl embprg_cpp embseg

esl -x embprg_cpp

Execution of the program results in text output, and a prepare (".dsp") file. The figure below
shows an ESL-Displays plot of the results.

Results of C++ embedded simulation

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-22

9.5 Generation of Interface Modules for
Embedded Segments

There is an ESL command eslgen whose purpose is to:

• Create a DLL function interface for an ESL program, which can be used in Microsoft
Visual C++ projects, or

• create a COM object (in fact a simple, not visual, control or ActiveX object), which can
be used in Visual C++ projects (in an object oriented manner) and also other
control/ActiveX hosts (such as Web Browsers), or

• create a CLR (Common Language Runtime) or .NET Framework object, which can
be used in .NET Framework (2+) projects such as C#.

The eslgen command applies to the MS Windows version of ESL only.

Restrictions

The following restrictions apply:

• eslgen relies on having Microsoft Visual C++ installed.

• For CLR (.NET) generation, the .NET Framework must be version 2 or higher.

• The invocation of the eslgen command must be done in one directory.

• The ESL program must be an embedded segment.

• The ESL LOGICAL data type generates integer values (same as ESL INTEGER data
type).

• Input/output is not available for CHARACTER arrays.

Invocation

There are four ways the eslgen command can be invoked:

To create a DLL from an ESL embedded segment, use the command:

eslgen -dll file_no_ext {io_package}.

To create a COM object from an ESL embedded segment and register it, use the command:

eslgen -com file_no_ext {io_package}.

To create a COM object from an ESL embedded segment (but do not register it), use the
command:

eslgen -comnr file_no_ext {io_package}.

To create a .NET Framework (2+) assembly from an ESL embedded segment, use the
command:

eslgen -clr file_no_ext {io_package}.

The 'file_no_ext' command parameter is the name of the ESL embedded segment program
file. The '.esl' extension should not be specified. No directory path should be specified, as the
eslgen command must be performed in the current directory. The name given here will be the
root name (termed <name> below) used for most of the generated files.

Note that eslgen does NOT use the name of the embedded segment.

Up to seven additional 'io_package' command parameters can be specified. These should be
the names of ESL PACKAGEs. The eslgen command will provide input/output for the
variables defined in these packages. If no 'io_package' command parameters are specified
the eslgen command will look for any packages beginning with 'Esl_'.

Note that the <name> and all ESL package and variable identifiers are transformed into a
"standard case", with an initial upper case letter and subsequent characters in lower case, in
the generated source files.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-23

Files Generated

For the '-dll' option, the following files will be generated:

name.hcd - (esl/esl_comp)

name.cpp - (esl/esl_ctrn)

name_dll.h - (esl_gen) - C/C++ include file for the name_dll.lib

name_dll.cpp - (esl_gen)

name_dll.def - (esl_gen)

name.obj - (esl/cl)

name_dll.obj - (esl/cl)

name_dll.lib - (link) - library for accessing the name_dll.dll

 functions in C/C++

name_dll.exp - (link)

name_dll.dll - (link) - the generated DLL file for the functions

For the '-com' and '-comnr' options, the following files will be generated:

name.hcd - (esl/esl_comp)

name.cpp - (esl/esl_ctrn)

name_com.idl - (esl_gen)

name_com.rc - (esl_gen)

name.rgs - (esl_gen)

{io_package.rgs}- (esl_gen)

name_com.cpp - (esl_gen)

name_com.def - (esl_gen)

name.h - (esl_gen) - C++ wrapper class for the COM object(s).

 This wraps COM objects named <x> by

 classes 'C<x>'.

name_com.h - (midl) - C/C++ include file for the COM object(s)

name_com_i.c - (midl) - C/C++ file declaring COM object &

 interface globally unique identifiers

 (GUIDs)

name_com.tlb - (midl)

name_com_p.c - (midl)

dlldata.c - (midl)

name_com.res - (rc)

name.obj - (esl/cl)

name_com.obj - (esl/cl)

name_com.lib - (link)

name_com.exp - (link)

name_com.dll - (link) - the generated DLL file for the COM

 object(s)

The {io_package.rgs} refers to .rgs files generated for every (valid) input/output package.

For the '-clr' option, the following files will be generated:

name.hcd - (esl/esl_comp)

name.cpp - (esl/esl_ctrn)

name_clr.cpp - (esl_gen) - C++/CLR file for the name_clr.dll

name_clr.obj - (esl/cl)

name_clr.dll - (link) - the generated .NET Framework assembly file

Note the assembly requires the Isim.Esl.dll assembly which is provided (with its
corresponding .xml file) in the ESL executable directory (environment variable ESLPROG).

Functions/Objects Generated

There are functions/methods for four simulation control operations ('ExStrt', 'ExInit', 'ExSim' &
'ExFin') that map onto the argument values used in the C++ Exp_mn function or the Fortran
EXP$MN subroutine.

There are functions/properties corresponding to the ESL Reserved package variables ('T' and
'Dis_st' are read-only).

For each (valid) input/output package, for each variable there are functions/properties to
correspond to the package variable. Each input/output variable will be represented as a pair
of access functions or a 'get/set' property of an object, depending on which form of generation
is used. For array/matrices the access functions/properties must take the number of indices
corresponding to the dimensionality of the array/matrix. (Indices are referenced from zero as

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-24

is usual for all generated forms.) In addition there functions/properties to return information
about the array.

• Rank - the dimensionality of the array/matrix - 1, 2, or 3

• Length - the total number of elements in the array

• Len_1 Len_2 Len_3 - the length of each dimension

• LowerBound_1 LowerBound_2 LowerBound_3 - the lower bound specified in ESL
when the array was declared.

For the '-dll' option:

• The functions for the simulation control operations are formed from
<name>_<operation>.

• All functions take an argument - a pointer to the simulation context. This must be
initialised to zero before the call to the ExStrt function and not changed afterwards.

• The functions to get a value for a Reserved package variable from the ESL program
are formed from <name>_<reserved-variable-name>.

• The functions to set a value for a Reserved package variable in the ESL program are
formed as above, prefixed by 'Set_' (and do not include 'T' and 'Dis_st').

• The functions to get a value for an io package variable from the ESL program are
formed from <name>_<package-name>_<package-variable-name>. For array
variables these functions have additional arguments for the indices.

• The functions to set a value for an io package variable in the ESL program are
formed as above, prefixed by 'Set_'. For array variables these functions have
additional arguments for the indices.

• The additional functions to get information about an array are formed from the
function to get a value appended with the appropriate value (e.g. _Rank _Length
_Len_1 _LowerBound_3).

For the '-com' and '-comnr' options a COM object is defined for the <name> and for
each io package.

• The <name> COM object has methods for each of the four simulation control
operations - named <operation>.

• The <name> COM object has properties corresponding to the Reserved package
variables - named <reserved-variable-name> (but 'T' and 'Dis_st' are read-only - to
get the values).

• The <name> COM object has read-only properties to get the COM object
corresponding to the io packages - named <package-name>.

• The io package COM objects have properties for each io package variable - named
<package-variable-name>. For array variables these functions have additional
arguments for the indices.

• The additional properties to get information about an array are formed from the
<package-variable-name> appended with the appropriate value (e.g. _Rank _Length
_Len_1 _LowerBound_3).

For the '-clr' option a CLR (or .NET) object is defined for the <name> and for each io
package.

The <name> CLR object and the io package CLR objects have the essentially the same
properties and methods as described for the corresponding COM objects. However,
array/matrix variables are represented by objects with properties that include the information
about an array (e.g. Rank Length Len_1 LowerBound_3). They support iteration over all
elements (in row-major order).

There are also a number of methods and properties for accessing the CLR object structure,
for instance, the property 'Packages' in the top level <name> CLR object accesses arrays of
io package CLR objects. The properties 'Variables' and 'Arrays' in an io package CLR object
accesses CLR objects for scalar ESL variables and the arrays in the io package.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-25

In addition to four simulation control operations, the <name> CLR object has an additional
method:

• ExPrestep - evaluate any embedded segment algebraic outputs without advancing
time

Algebraic outputs are outputs whose values change instantaneously when one or more input
value changes. ExPrestep may be called immediately before ExSim is called to resolve any
such algebraic relationships.

COM Globally Unique Identifiers

COM objects (specifically, class identifiers and interface identifiers) are given globally unique
identifiers (GUIDs) which are used to register the objects.

In the development process, the eslgen command makes use of any previously created
GUIDs by seeking to read the '<name>_com_i.c' file. The first time, or if that file is not present
on the current directory, the eslgen' command will generate fresh GUIDs.

Normally, you would retain the '<name>_com_i.c' file and use the same GUIDs, as this will
allow a program that uses the COM objects to automatically make use of a revised
'<name>_com.dll' without itself being changed.

COM Registration

In order to use the COM object(s) on a given MS Windows host computer, the
<name>_com.dll must be registered. You may need to enable Administrator privileges to
perform the registration. The eslgen command does this at the end if the '-com' option is
specified (assuming the preceding steps were successful), but if the '-comnr' option is used it
does not register the COM object(s).

Typically, you would use the '-comnr' option while you had not finalised the interface to the
COM objects (in particular the number of the io packages), or when it is never intended to
install the COM object(s) on the computer on which the development is taking place.

To install the COM objects, say, after copying the <name>_com.dll to a different host
computer and permanently locating it, register it by the command:

regsvr32 <name>_com

How to Use

We recommend that you use a different directory to develop an application making use of the
DLL generated as described above. Certain files should be copied from the generation
directory to the application directory, depending on which type of DLL was generated by the
options '-dll' (function), '-com' (COM objects) or '-clr' (CLR (.NET) objects), and how the
application using it is to be developed.

9.5.1 Using the '-dll' option in a C (or C++) application:

• Copy the following files to the application directory: <name>_dll.h <name>_dll.lib
<name>_dll.dll (but see the note below).

• Write the C (or C++) code to invoke the DLL functions declared in the <name>_dll.h
file to implement your application. For example, name the file <name>_dll_c.c.

Compile and link your application by a command like: cl <name>_dll_c.c

<name>_dll.lib.

• This will produce the executable <name>_dll_c.exe for the application.

Note that it is only necessary to ensure that the <name>_dll.dll file is on the path used to
search for DLLs - which includes the directory of the application executable, that is, the
current directory, the Windows System directory, and the directories set up in the 'PATH'.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-26

9.5.2 Using the '-com' option in a C++ application:

• Copy the following files to the application directory: <name>.h <name>_com.h
<name>_com_i.c.

• Write the C++ code to create the C++ object instance and call their member functions
for the classes declared in the <name>.h file to implement your application. For
example, name the file <name>_com_cpp.cpp.

You will need to have:

HRESULT res = CoInitialize(0); // S_OK

at the beginning and

CoUninitialize();

at the end.

To create the object instances, you create the top-level object (say, called <name>) either via
new (recommended) or directly in some scope, thus:

C<name>* <name> = new C<name>; // or C<name> <name>;

It is then necessary to set the C++ object up as the COM object, via:

res = <name>->Create(); // or res = <name>.Create();

It is important to check this worked via, for example:

if (res != S_OK) return 1; // Exit. The COM object might not be registered.

It is important to clean up the COM object at the end, by using:

delete <name>; // or <name>.Release();

• Compile and link your application by a command like: cl <name>_com_cpp.cpp.

• This will produce the executable <name>_com_cpp.exe for the application.

9.5.3 Using the '-clr' option in a C# application:

• No files need to be copied to the application directory.

• Create a C# project (e.g. "empty" or for a "console application").

• In the project solution, select to add a reference and browse to the assembly you
created with eslgen - <name>_clr.dll.
Also add a reference to the Isim.Esl.dll assembly - which is normally located in the
ESL executable directory (environment variable ESLPROG).
Note: This will copy the file to where the application executable is to be created. If,
when the executable has be made, it is moved or copied, the Isim.Esl.dll should be
moved or copied to the same location.

• Write the C# code to create the .NET Framework objects and use the properties &
member functions to implement your application. For example, name the file
<name>_clr_cs.cs

To create the objects, you create the top-level object (say, called <name>) via new, thus:

C<name> <name> = new C<name>();

• You may use the object browser or "intelli-text" feature in VisualStudio to see the
properties & methods. The properties of the C<name> object will include the package
objects as determined when the eslgen was invoked (i.e. by explicit {io_package}s or
that begin with "Esl_").

• You may run the application directly in the C# project to debug it, or create an
executable to run independently.

Chapter 9 ESL Segments

ESL Simulation Software - Development Guide 9-27

An alternative to using C# project in VisualStudio is to use the 'csc' C# compiler directly.

• Copy the <name>_clr.dll assembly (created via eslgen -clr) and the 'Isim.Esl.dll'
assembly (from the ESL executable directory) to the application directory.

Having created a C# program (say <program>.cs) that uses the <name>_clr.dll assembly,
compile it with a command like:

csc /reference:<name>_clr.dll,Isim.Esl.dll <program>.cs

Examples

The ...\esl\examples directory includes the source files for applications developed for the
'embseg.esl' example when DLLs for it are generated with the eslgen command (with
'embcom' specified as io_package, that is, 'eslgen -dll embseg embcom'). We recommend
that you copy the files to separate directories to do the generations, and to try the example
applications.

The example source file that uses the 'embseg_dll.dll' (generated by the '-dll' option) is:

• embprg_dll_c.c - C source file. (Build this example with 'cl embprg_dll_c.c
embseg_dll.lib'.)

The example source file that uses the 'embseg_com.dll' (generated by the '-com' option) is:

• embprg_com_cpp.cpp - C++ source file.

The example source file that uses the 'embseg_clr.dll' (generated by the '-clr' option) is:

• embprg_clr_cs.cs - C# source file. (You may build this example with 'csc
/r:embseg_clr.dll,Isim.Esl.dll embprg_clr_cs.cs'.)

You may also care to look at the example that illustrate the use of two instances of the same
embedded segment - the sineprg_clr_cs.cs C# program which uses the sineseg.esl
example.

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-1

CHAPTER 10

10 Steady-State Analysis
This section introduces steady-state analysis support, which provides steady-state "finders",
linearization, Eigenvalue determination, and parameter optimization.

Contents:

• Introduction

• The ANALYSIS Region

• The TRIM Statement

• the LINEARIZE Statement

• the EIGENVALUE Statement

• The ANALYSIS MODEL Call

• Steady-State Algorithms

• Optimization

• Two Link Robot Arm Example

10.1 Introduction
Whether or not a system is linear depends on whether or not it satisfies the principles of
superposition:

𝐹(𝑥1 + 𝑥2) = 𝐹(𝑥1) + 𝐹(𝑥2)

and Homogenity:

𝐹(𝜏𝑥) = 𝜏𝐹(𝑥)

Most real systems are highly non-linear. However, it is often desirable to consider their
operation over a limited range about a steady-state position. In such cases the system may
be approximated by a linear model, expressed in state-space form as:

𝒙′ = 𝑨𝑥 + 𝑩𝑢
𝒚′ = 𝑪𝑥 + 𝑫𝑢

where:

A is the system matrix,

B is the input matrix,

C is the output matrix,

D is the input to output relationship (often zero),

u is the input vector,

y is the output vector and

x is the state vector

These equations will be valid only in those regions of linearity which are centred around the
steady-state position.

It is often desirable in modelling to obtain such a linear approximation of the system model at
a steady-state position, so that linear analysis and design techniques may be applied.

To locate a steady-state position, a TRIM statement is provided which uses one of two
alternative steady-state algorithms to locate the point at which specified derivatives are zero.
To calculate the A, B, C and D matrices described above, a LINEARIZE statement is used.
The LINEARIZE statement invokes a perturbation technique to determine the linear model.
Also provided is an EIGENVALUE statement which allows the eigenvalues of the linearized
model to be calculated.

These facilities are provided by the inclusion of an ANALYSIS region in the model
subprogram. The ANALYSIS region, which appears at the end of the MODEL following the
TERMINAL region (if present), may contain procedural code including one TRIM and one

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-2

LINEARIZE statement. The EIGENVALUE statement is a general procedural code statement
and, although typically used in the ANALYSIS region, may appear in any procedural code
region. The TRIM and LINEARIZE statements specify the steady-state and linearization
requirements respectively. A special model call is made to invoke the ANALYSIS region by
setting the integration algorithm reserved variable, ALGO, to an appropriate value. Normal
calls to the model ignore the ANALYSIS region. Related features are the ESL RESUME and
RESTART statements, (ESL Run Control), which allow a model to be continued (resumed), or
restarted, from the state it had reached on completion of the preceding call. This is a general
feature which in the present context may be used to invoke a linearization having first run the
model to a steady-state condition, or alternatively, to request a run from the steady-state
resulting from execution of the TRIM statement. The latter operation may be attempted to
verify the steady-state condition. These facilities are described in the following sections.

10.2 The ANALYSIS Region
To find a steady-state of a model or to linearize it, an ANALYSIS region is included as the last
region of the MODEL subprogram. The region is specified by the keyword ANALYSIS.

MODEL MOD1;

...

INITIAL

...

DYNAMIC

...

TERMINAL

...

ANALYSIS

... analysis region

...

END MOD1;

The ANALYSIS region is a procedural code region and may contain any procedural
statements (such as PRINT, READ, assignments etc). In particular it may contain only one
TRIM and/or one LINEARIZE statement.

Note that an ANALYSIS region may only appear in a MODEL subprogram. It may not appear
in a SUBMODEL or SEGMENT.

10.3 The TRIM Statement
The TRIM statement specifies the steady-state requirements.

The problem of finding a steady-state is essentially: "given the steady-state values of certain
state variables and/or required inputs, find the remaining state and/or input values consistent
with the steady-state condition", that is:

• Given system inputs find the values for state variables which make the derivatives
zero, or

• given values for the state variables find values of inputs which make the derivatives
zero, or

• given some state variables and some inputs - find the remaining state variables and
inputs which make the derivatives zero.

The known variable values are set in the initial region of the model. The TRIM statement
specifies those derivatives which must be zero at the steady-state (the derivative vector) and
an equal number of states and/or inputs, the values of which are to be found (the control
vector). The form of the statement is as follows:

TRIM [control_vector] := [derivative_vector] ;

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-3

where:

control_vector is a list of states and/or inputs.

derivative_vector is a list of derivatives.

The states, inputs and derivatives may be scalar variables, one dimensional arrays or a
mixture of both.

Example

TRIM [x,y,ARR] := [BRR',z',x'];

Where:

x, y, and z are scalar variables and

ARR and BRR are arrays.

Note that the total number of scalar variables and array elements must be the same in the
control vector and the derivative vector, but that the order is not important.

In terms of ESL's usage classification of simulation variables, the control variables may be
classified as states or parameters (a variable set in the INITIAL region and not subsequently
changed). The derivatives may be any variable with class algebraic.

The TRIM statement effectively identifies a subset of the dynamic region as being a set of
non-linear algebraic equations to be solved. A value for the control vector must be found
which forces the derivative vector to zero.

10.4 The LINEARIZE Statement
For the required steady-state condition, the linearized model may be expressed in state-
space form as:

𝒙′ = 𝑨𝑥 + 𝑩𝑢
𝒚′ = 𝑪𝑥 + 𝑫𝑢

where:

x is the state vector,

u is the input vector and

y is the output vector.

Note that here x, u, and y are not the absolute values of the state, input and output vectors,
but deviations from their steady-state values.

The LINEARIZE statement specifies the names of arrays to hold the A and B matrices, the
state vector and the input vector. Optionally, arrays to hold the C and D matrices and the
output vector may also be specified. The arrays for the state-space matrices must have been
declared and have appropriate dimensions. The form of the LINEARIZE statement is:

LINEARIZE A_matrix, B_matrix := [state_vector],[input_vector];

if the state equation only is required, or:

LINEARIZE A_matrix, B_matrix := [state_vector], [input_vector]

 C_matrix, D_matrix := [output_vector];

if both state and output equations are required,

where:

A_matrix, B_matrix, C_matrix and D_matrix are the names of arrays to hold

the state-space A, B, C, and D matrices.

state_vector is a list of states,

input_vector is a list of inputs and

output_vector is a list of outputs.

As with the TRIM statement, the states, inputs and outputs may be scalar variables, one
dimensional arrays or a mixture of both.

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-4

Example:

LINEARIZE A, B := [x, z, BRR], [URR, u1, u2]

 C, D := [y1, y2];

Where:

x, z, u1, u2, y1, y2 are scalar variables and

BRR and URR are arrays.

10.5 The EIGENVALUE Statement
An n x n matrix A has an eigenvector x and corresponding eigenvalue λ if:

𝑨𝒙 = 𝜆𝒙

It follows that the eigenvalues are the n roots of the characteristic equation:

𝑑𝑒𝑡|𝑨 − 𝜆𝑰|

The eigenvalues of the state-space A matrix are of particular importance since they
characterize the dynamic performance of the linearized model.

The EIGENVALUE statement is provided to determine the eigenvalues of a square matrix and
has the following form:

EIGENVALUE L := A;

where:

A is the real n x n matrix whose eigenvalues are to be determined and

L is a real n x 2 array to hold the eigenvalues.

On return from the statement, L(1..n, 1) will contain the real parts of the eigenvalues, and
L(1..n, 2) will contain the imaginary parts (if the eigenvalues are complex).

Typically the EIGENVALUE statement will be positioned in the ANALYSIS region to
determine the eigenvalues of the state-space A matrix following a TRIM and LINEARIZE
statement. For example:

TRIM [x1, x2] := [x1', x2'];

LINEARIZE A,B := [x1, x2], [input];

EIGENVALUE L := A;

Note that as with the A and B matrices, the L array must have been previously declared and
have correct dimensions.

The EIGENVALUE statement is a general procedural code statement, and not therefore
restricted to the ANALYSIS region, and may be used to determine the eigenvalues of any real
square matrix.

10.6 The ANALYSIS MODEL Call
The steady-state and linearize requirements specified by appropriate TRIM and LINEARIZE
statements placed in the ANALYSIS region are activated by calling the model with ALGO set
to LIN1 or LIN2 from the experiment region. The effect of this special MODEL call is first to
carry out an initialization pass of the MODEL including any SUBMODELs it might call. Control
then passes to the ANALYSIS region where, on encountering a TRIM or LINEARIZE
statement, appropriate DYNAMIC region code passes are made as necessary to accomplish
the specified operations.

The alternative values of ALGO (LIN1 or LIN2) specify either a Newton-Raphson, or a
Simplex optimization algorithm to be used by the TRIM statement to locate the steady-state.
The same perturbation algorithm is invoked by the LINEARIZE statement irrespective of
which value of ALGO is used.

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-5

Example:

Experiment

...

ALGO := LIN1; or ALGO := LIN2;

MOD1;

...

The analysis region may contain PRINT statements to communicate the computed steady-
state values and the resultant state-space matrices. Alternatively these results may be
passed back to the experiment region as model arguments.

The state-space matrices may, of course, be written in an appropriate form to a file to be
analyzed at a later time using a proprietary linear analysis package.

A complete example of using the ESL linearization facilities is given at the end of this section.

10.7 Steady-State Algorithms
Currently ESL supports two routines for determining a steady-state condition, the Newton-
Raphson (LIN1) and the Simplex (LIN2). These are selected by setting the ALGO variable to
LIN1 or LIN2 in the Experiment region prior to calling the MODEL, or in the model's INITIAL
region. Note that during these processes discontinuity states are frozen at their initial values.

LIN1 - Newton-Raphson Algorithm

This approach uses a standard iterative Newton-Raphson formula to solve the set of non-
linear algebraic equations inferred by the TRIM statement.

If F(x) = 0 is the set of equations to be solved (F(x) is the derivative vector, and x is the
control vector). Given an initial value for the control vector, x1, improved values are found
using the formula:

𝒙𝑛+1 = 𝒙𝑛 − 𝑱−1𝑭(𝒙) 𝑓𝑜𝑟 𝑛 = 1, 2,…𝑢𝑛𝑡𝑖𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠

J is the Jacobian matrix (𝜕𝑭
𝜕𝒙⁄) and is determined using perturbation techniques.

LIN2 - Simplex Algorithm

There are situations when the use of the Newton-Raphson method fails to find a steady-state
because a singular Jacobian matrix occurs at some point in the iterations. In such situations,
an alternative Simplex optimization algorithm may be invoked (see the paper by J A Nelder
and R Mead in The Computer Journal, 1965, Vol 7, page 308)

For a given function:

𝑭(𝒙) 𝑤ℎ𝑒𝑟𝑒 𝒙 = [𝑥1, 𝑥2, … 𝑥𝑛]𝑇

the Simplex algorithm will attempt to find a value for x which will minimize F(x). In the present
context, x is the control vector as specified in the TRIM statement and F(x) is calculated as
the sum of squares of the derivative vector elements. Thus, use of the Simplex algorithm
computes a control vector which minimizes the derivative vector. If the minimized derivative
vector is zero (or approximately zero) then a steady-state of the model has been found.

Warning: As with any optimization algorithm, there is no guarantee that the global minimum of
the function will be located. The algorithm may come to rest on any one of a number of
possible local minima. It is therefore important to check a true steady-state has been found
when using the Simplex algorithm.

Algorithm description

At the starting point in the n-dimensional space of the control vector, the Simplex algorithm
requires the construction of an initial simplex, that is, a geometrical figure consisting of n+1
vertices. Thus, in two dimensions the simplex is a triangle; in three dimensions a tetrahedron
and so on. The algorithm computes the value of F(x) at each of the vertices of the initial
simplex, and defines a second simplex by reflecting the worst vertex (the one having the
largest value of F(x)) through the opposite side. This manoeuvre is repeated as the simplex

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-6

progresses through n-dimensional space towards the minimum. The size and shape of the
simplex is automatically changed by the algorithm allowing long or short steps to be taken in
each direction, depending on the manner in which F(x) varies.

The Simplex algorithm is not renowned for its efficiency in terms of function evaluations, but it
is robust and considered a suitable general purpose algorithm able to cope with a wide range
of nonlinear models.

Initialisation

The size of the initial simplex should be chosen in accordance with the scale or order of
magnitude of the control variables (elements of x) and the anticipated proximity of their initial
values to the steady-state. In order to provide a simple means of specifying the size of the
initial simplex, the reserved variable CINT (normally the communication interval in a
simulation) is given a different meaning and used with the initial value of the control vector in
the following manner:

If

𝒙0 = [𝑥1, 𝑥2,… 𝑥𝑛]𝑇

is the starting point (initial value of the control vector), then the remaining n initial simplex
vertices are computed using:

𝒙𝑖 = 𝒙0 + 𝐷𝑖𝒖𝑖 𝑓𝑜𝑟 𝑖 = 1…𝑛

where the ui's are the n unit vectors, that is, the initial simplex has an edge of length Di along
the ith dimension. Di is calculated using:

𝐷𝑖 = {
𝐶𝐼𝑁𝑇 𝑖𝑓 𝑥𝑖 = 0.0
𝐶𝐼𝑁𝑇 × 𝑥𝑖 𝑖𝑓 𝑥𝑖 ≠ 0.0

If the initial value of a control variable is non-zero, then the simplex side length, in the
direction of that variable, is the initial value multiplied by CINT. If, however, the initial value of
a control variable is zero, then the simplex side length in that direction is taken as CINT.

Alternatively, the Reserved variable, OP_STP, may be used to establish an initial value for
the size of the simplex. To employ OP_STP, instead of CINT, simply change the value of
OP_STP from its default value of zero prior to optimization or linearization.

10.8 Optimization
A general user interface is provided to the Simplex optimization algorithm used by the LIN2
steady-state option. This allows dynamic optimization of ESL models to be undertaken. For
example, it may be necessary to select the gains of a PID controller to achieve optimum
dynamic response of a control system. In this case, a model of the control system would be
formulated with a suitable performance function as a single output, and the PID controller
gains as input arguments. The model is called in a special manner using an OPTIMIZE
statement from the experiment region. Repeated runs of the model are automatically made
under the control of the optimization algorithm, which varies the model arguments in order to
minimize the performance function. On return from the OPTIMIZE statement, the model
performance function output will be set to the minimum value achieved, and the input
arguments to their corresponding optimum values.

The OPTIMIZE statement may also be used to minimize an algebraic function of several
variables. This is achieved by writing the function within an ESL procedure, with the function
value as the first argument (output) and the variables as the following arguments (inputs). The
procedure is then called through the OPTIMIZE statement in a similar manner to an ESL
model.

The OPTIMIZE statement

The form of the OPTIMIZE statement is:

OPTIMIZE subprog_name(cost := par1, par2, ...);

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-7

where:

subprog_name is the name of the ESL model or procedure to be optimized,

cost is the performance function output to be minimized and

par1, par2, are the input arguments.

The OPTIMIZE argument list must match exactly that of the subprogram definition and all the
arguments must be of type real. Further, the input arguments must be variables, not
expressions, and be given initial values before the optimization call. For example:

STUDY

 MODEL CONTROLLER(REAL: cost := REAL: g1, g2, g3);

 END CONTROLLER;

-- EXPERIMENT

 REAL: perform, gain1, gain2, gain3;

 gain1 := 0.1; gain2 := 0.1; gain3 := 0.2;

 OPTIMIZE CONTROLLER(perform := gain1, gain2, gain3);

 PRINT "performance function", perform;

 PRINT "optimum gains", gain1, gain2, gain3;

END_STUDY

10.9 Two Link Robot Arm Example
Robot arm

To illustrate the steady-state and linearization features described above, we consider a model
of a two-link robot arm assembly. The model is highly nonlinear, and the problem is to
determine an applied torque required to achieve a given steady-state condition, and hence
obtain a linearized model at that steady-state. The arrangement of the robot arm is shown in
the figure above.

The model

Theta1 defines the angular displacement of the first link with respect to the vertical. Theta2
defines the angular displacement of the second link with respect to the first. Quantities (2*l1),
m1 and J1 are the length, mass, and moment of inertia respectively of the first link and (2*l2),
m2 and J2 similar quantities for the second. F1 and F2 are viscous friction terms associated
with the two joints. Tau1 and Tau2 are torques applied externally at the two joints. Motion in
the vertical plane only is considered. The arrangement may be described by the following
equations:

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-8

Tau1 = a*Theta1'' + b*Theta2'' + c

Tau2 = d*Theta1'' + e*Theta2'' + f

where:

a = J1 + J2 + 4*m2*(l1)2 + 4*m2*l1*l2*COS(Theta2)

b = J2 + 2*m2*l1*l2*COS(Theta2)

c = -4*m2*l1*l2*SIN(Theta2)*Theta1'*Theta2'

 -2*m2*l1*l2*SIN(Theta2)*(Theta2')2

 -m2*l2*g*SIN(Theta1+Theta2) - 2*m2*l1*g*SIN(Theta1)

 -m1*l1*g*SIN(Theta1) + F1*Theta1'

d = J2 + 2*m2*l1*l2*COS(Theta2)

e = J2

f = -m2*l2*g*SIN(Theta1+Theta2) + 2*m2*l1*l2*SIN(Theta2)

 *(Theta1')2 +F2*Theta2'

These equations may be written in matrix form as:

TAU = A * THETA'' + B

where:

TAU = [Tau1 Tau2]T

THETA = [Theta1 Theta2]T

A = |a b|

 |d e|

B = [c f]T

Hence the system may be described by the second order differential equation:

THETA'' = A-1 (TAU - B)

Steady-state and linearization

It is required to find the two torques, Tau1 and Tau2, which result in the steady-state
condition:

Theta1 = 45 degrees

Theta2 = 0 degrees

This is an exacting requirement since it represents an unstable condition; the slightest
perturbation from the steady-state will either cause the system to flip to a stable condition with
Theta1 equal to 135 degrees and Theta2 equal to zero degrees, or cause the arms to rotate
continuously.

Once in the steady-state, the following linearized model is required:

|th1' | |th1 | |tau1|

|th2' | = AA |th2 | + BB | |

|th1''| |th1'| |tau2|

|th2''| |th2'|

ESL program

An ESL program to achieve the required steady-state and linearization requirements is listed
below. The following notes provide an explanation of the program structure and operation.

The model ROBOTARM implements the mathematical model described above. Vectors are
used to represent Theta (th(2)) and Tau (tau(2)). Hence the system differential equation is
expressed as:

th'' := INV(A)*(tau-B);

Note that the use of the procedural block to set individual elements of the matrices A and B.

For the steady-state requirement, Tau1 and Tau2 form the control vector (we are seeking
values for these variables consistent with the steady-state condition). Similarly, Theta1'' and
Theta2'' form the derivative vector (which must be zero at the steady-state). Thus the TRIM
statement in the analysis region takes the form:

TRIM [tau] := [th''];

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-9

For the linearized model, matrices AA(4,4) and BB(4,2) are declared. Theta1, Theta2,
Theta1', Theta2' form the state vector and Tau1, Tau2 the input vector. The LINEARIZE
statement is therefore:

LINEARIZE AA, BB := [th,th'], [tau];

Further statements are included in the analysis region to print out the steady-state torque, and
the values of the AA and BB matrices.

The model is written so that values specifying the steady-state (Theta1, Theta2, Theta1' and
Theta2') and an initial guess at the torque (Tau1 and Tau2) are passed as arguments. These
are the input arguments th0(2), thd0(2) and torque(2). The resultant steady-state torque is
returned as the output argument of the model, sstrq(2).

In the experiment region of the program, the steady-state values of the state variables and the
initial value of torque are set. The model is then called with ALGO equal to LIN1 to perform
an analysis region pass.

Following the analysis pass, which will establish the steady-state and linearized model,
provision is made in the experiment to perform a normal simulation from the established
steady-state condition through the use of the RESUME statement. The purpose of this
simulation run is to demonstrate that the steady-state has been successfully found by
generating a plot of Theta1 and Theta2. It should be observed that Theta1 and Theta2
remain constant throughout the run. The program then enters a loop in which normal
simulation runs are made using values of torque entered by the user. It will be observed that
by entering values of torque only slightly different from the calculated steady-state values will
cause the robot arm to flip into a stable state, or rotate continuously.

Results

The ESL program is available in the ...\esl\examples directory under the name robotarm.esl.
The values of the steady-state torque and the linearized model matrices, as printed by the
program are:

Steady-state tau1, tau2: -0.090836495 -0.017792713

State-space arrays AA, BB :

 0.00000E+00 0.00000E+00 1.0000 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 1.0000

 42.452 -21.221 -8.6677 20.572

 -59.939 90.615 20.491 -71.329

 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00

 871.64 -2060.0

 -2060.6 7142.7

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-10

Robot arm results

Graphs of Theta1 and Theta2, as displayed by ESL-Displays from the prepare file are shown
in the figure above. Run 1 corresponds to the steady-state, showing Theta1 constant at 45
degrees and Theta2 constant at zero degrees. Run 2 was obtained using torques of:

Tau1 = -0.09 Tau2 = -0.01

Program listing - distributed file robotarm.esl

STUDY

 -- Two link robot arm example.

 -- The model represents two dimensional motion of a two link robot

 -- arm. th1 is the angular position of the first link with respect

 -- to the vertical; th2 is the position of the second link relative

 -- to the first. m1, l1, J1 are the mass, length and inertia of the

 -- first link; m2, l2, J2 are similar constants of the second.

 -- The matrix C represents viscous friction terms.

 -- tau1 is the absolute torque applied to the first link; tau2 is

 -- the torque applied to the second link relative to the first.

 -- Inputs to the model are: the constant applied torque (torque)

 -- and initial values for th1, th2 (th0) and th1',th2' (thd0).

 --

 MODEL ROBOTARM(REAL:sstrq(2):=REAL:torque(2),th0(2),thd0(2));

 REAL:tau(2),th(2),Theta(2),thd(2),A(2,2),B(2);

 CONSTANT REAL:m1/0.052/,m2/0.019/,J1/9.26E-4/,J2/4.40E-4/,

 l1/0.117/,l2/0.135/,g/9.81/,F1/0.01/,F2/0.01/;

 REAL:AA(4,4),BB(4,2);

 INITIAL

 -- Initialize input (control) and states

 tau := torque;

 th := th0;

 th' := thd0;

 DYNAMIC

 -- The following statement is necessary since the forms

 -- th'(1) or th(1)' are not allowed

 thd := th';

 PROCEDURAL(A,B := th,thd);

 -- This procedural block is necessary to assign values to

 -- matrix elements

 A(1,1) := J1+J2+4.0*m2*l1*l1+4.0*m2*l1*l2*COS(th(2));

 A(1,2) := J2+2.0*m2*l1*l2*COS(th(2));

 A(2,1) := J2+2.0*m2*l1*l2*COS(th(2));

 A(2,2) := J2;

Chapter 10 Steady-State Analysis

ESL Simulation Software - Development Guide 10-11

 B(1) := -2.0*m2*l1*l2*SIN(th(2))*thd(2)*(2.0*thd(1)+thd(2))

 -m2*l2*g*SIN(th(1)+th(2))

 -l1*g*SIN(th(1))*(2.0*m2+m1)+F1*thd(1);

 B(2) := -m2*l2*g*SIN(th(1)+th(2))

 +2.0*m2*l1*l2*SIN(th(2))*thd(1)*thd(1)+F2*thd(2);

 END_PROCEDURAL;

-- The model used is: tau = A*th'' + B. Hence the following statement

 th'' := INV(A)*(tau-B);

 STEP

 -- Convert angles to degrees

 Theta := th*57.29578;

 PREPARE "ROBOTARM","ROBOT ARM - Linearization Example",

 "Run 1 - steady-state torque",

 T,"seconds",Theta,"degrees";

 PLOT "ROBOT ARM - Linearization Example",

 T,Theta(1),[Theta(2)],0.0,TFIN,0.0,180.0;

 ANALYSIS

 -- Analysis region specifying steady-state and linearization

 -- For the steady-state position, values of tau1 and tau2 must be

 -- found such that th1'' and th2'' are zero, that is, tau is the

 -- control

 -- vector and th'' is the derivative vector

 TRIM [tau]:= [th''];

 PRINT "Steady-state tau1, tau2: ",TRNSP(tau):13.9,/;

 -- The required linear model is:

 --

 -- |th1' | |th1 | |tau1|

 -- |th2' | = AA |th2 | + BB | |

 -- |th1''| |th1'| |tau2|

 -- |th2''| |th2'|

 --

 LINEARIZE AA,BB := [th,th'], [tau];

 PRINT "State-space arrays AA, BB :",//,AA,//,BB,/;

 sstrq:=tau;

 END ROBOTARM;

 -- Experiment

 REAL:tau(2),th0(2),thd0(2),sstrq(2);

 PRINT "ROBOT ARM Linearization Example",//,

 "Makes an analysis model call to find the steady-state",/,

 "condition for th1 = 45 degrees and th2 = 0 degrees and",/,

 "hence obtains the linearized model at that steady-state",/;

 -- Obtain linearized model around equilibrium position:

 -- th1 = 45 degrees, th2 = 0 degrees

 -- Set ALGO to request an 'analysis' run

 ALGO:=LIN1;

 -- Set arbitrary initial value for control vector

 tau(1) :=0.0; tau(2) :=0.0;

 -- Set states to equilibrium values

 th0(1) :=0.7854; th0(2) :=0.0;

 thd0(1):=0.0; thd0(2):=0.0;

 ROBOTARM(sstrq:= tau,th0,thd0);

 PRINT "To verify equilibrium has been correctly found, request a",/,

 "simulation run starting from the steady-state position",/;

 READ "<RETURN> to simulate from steady-state";

 -- Select appropriate simulation parameters

 CINT:=0.1;

 ALGO:=GEAR1;

 -- The RESUME statement continues a simulation without further passes

 -- through the initial region, hence the inputs are ignored

 RESUME ROBOTARM(sstrq:= tau,th0,thd0);

 PRINT "Different values of torque may now be entered for comparison",/;

 PRINT "Steady-state torque = ",TRNSP(sstrq):13.9;

 -- The following loop allows different torques to be tried

 LOOP

 READ "Enter new tau1 and tau2: ",tau;

 ROBOTARM(sstrq:= tau,th0,thd0);

 END_LOOP;

 END_STUDY

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-1

CHAPTER 11

11 ESL Run Control
This section describes how an ESL simulation execution may be controlled when using the
Interpreter or a Translator generated program. The features described here allow the user to
change the course of a simulation without changing the basic ESL program. They include
user interaction with program; restarting or continuing an ESL simulation run; using the
"snapshot" facility to restart or continue a simulation; changing ESL parameters at the start of
execution and during the course of execution.

These features are most easily accessed through the ESL-SEC (Simulation Execution
Control) program which provides a graphical interface. In addition to the features listed above,
ESL-SEC also allows the specification of Runtime Displays. While ESL-SEC is the preferred
way of interactively running an ESL program, all the features except runtime displays may be
accessed directly from the command line.

Contents:

• ESL-SEC

• INTERACT Control

• Simulation Driver Files

• RESUME and RESTART

• Snapshot Support

11.1 ESL-SEC
ESL-SEC (Simulation Execution Control) is invoked from the Simulate>Run Simulation… or
Simulate>Simulation Execution… menu option of ESL-Studio or the command prompt
(terminal):

…>esl_sec

The general appearance of the main ESL-SEC window is shown below.

When run from the ESL-Studio Simulate>Run Simulation… menu option, ESL-SEC will be
setup to run the simulation defined by the current diagram and ready to start. When run from
the ESL-Studio Simulate>Simulation Execution menu option or from a command prompt, it
will first need to be set up with the simulation program filename (.esl) or specification file
(.sec) using the Setup button. For further information on using ESL-SEC, refer to the ESL-
Studio Help Pages.

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-2

11.2 INTERACT Control
The INTERACT service provides a means of monitoring progress and examining the values
of user variables. It gives the user the ability to change variables, continue, restart or quit the
simulation. In short, it provides a monitoring, testing and debugging facility, and also a simple
way of changing the course of the simulation without having to program changes in ESL
source code.

The INTERACT service may be invoked either by an explicit INTERACT statement, for
example:

INTERACT;

or conditionally, by, for example:

if t >= t_interact then INTERACT; end_if;

The Interact service may be explicitly invoked by an INTERACT statement in the user
program, or implicitly invoked in a number of ways. Command line parameters to specify
simulation execution using a "snapshot" or "simulation driver file" (-s, -sc and -drv), are
described later in this section, and cause the Interact service to be invoked immediately at the
start of a program.

The Interactive service also may be invoked by use of the Break key sequence (Ctrl + Break
on a PC, Ctrl + C on most other systems). ESL run-time control takes different actions
depending on the number of times the Break key is pressed. During a simulation run:

• Entering Break once will cause the Interact service to be entered at the end of a
model or segment communication region.

• Entering Break twice (before ESL has reached a communication point), will cause the
Interact service to be entered after a step region has been computed.

• Entering Break three times (before ESL has reached a step or communication point)
will be treated as an "abort" break, and cause the Interact service to be entered as
soon as possible (with the Interpreter this is immediate). In this case the program is
not allowed to continue from the Interact - a restart is the only execution option.

During Linearization a single Break invokes the interactive service.

The ESL keyboard READ is not over-sensitive to a Break; it causes the current input to be
deleted (as ^U or Esc), but it does not abort the reading operation. If new valid user input
occurs the Break is ignored completely, but if Return/Enter is pressed immediately after the
Break it is then registered (counted). However, ESL will then demand non-blank input to
satisfy the READ.

Interact Commands

The Interact commands provide enhanced run-time control and support. A summary of the
commands are provided during Interact service by typing help, for example:

>help

Commands (may be abbreviated to their initial capital letters):

 Quit - exit from ESL

 Rerun [run_options] - perform another run of model

 REStart [run_options] - start program again

 run_options :=

 [-s snapfile | -sc snapfile [tfin=numb]] [-drv drvfile]

 Continue - continue, INTERACT at end run

 Continue time - continue, INTERACT at com point

 t >= time

 Continue NOINT - continue, no implicit INTERACT

 Next - continue until next com point

 STep - continue until next step point

 SKip - skip to next module,

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-3

 Translator treats as STEP

 Drv [driver_file] - take command from file or already open

 file

 CLs - clears screen

 Modules - displays all module names

 Trace - displays active module

 STAtus - program status

 Finish - Finish run, exit model via

 Terminal region

 Enddrv - closes .drv file

 SNapshot snap_file - creates snapshot file of

 current state

 DAta_mod module - set default data module for SET/VALUE

 Value [var_spec {,var_spec}]

 - displays values, if no parameters

 current module values displayed

 var_spec :=

 (module)[variable {,variable}] | variable {,variable}

 Set var_set {,var_set} - sets variables

 var_set := [(module)] variable = number {,variable = number}

 variable := scalar, array, or subscripted array element

The following describes these commands in more detail.

Quit

Exits from the ESL program.

Rerun [-drv file]

Perform another run of model. Control moves to the start of the program (experiment), but
stays with the Interactive service allowing the user to change parameters for the subsequent
run. Note that when the "Continue" command is issued to execute the run the experiment
code is bypassed, and the first model call is executed starting with its initial region. All files
remain in the same state; any PREPARE or TABULATE files will treat the subsequent run as
a further run. In the case of an Optimization appearing before a Model call, a "Rerun,
Continue" sequence passes control to the Optimize statement.

Restart [run_options]

Restarts the program completely. The run_options are any allowed command line
parameters which may be used to start an ESL execution. All files are closed.

Continue [options]

The Continue command is the means of instructing the program to "continue" execution. Its
basic use, without qualifying parameters, simply allows the simulation to continue. Even this
simple form of the command has the additional property of re-invoking the Interact service at
the end of the current or subsequent simulation run.

The Continue noint command will cause the program to continue, but not automatically
Interact, as occurs with the other forms of Continue.

The Continue 12.0 form of the command will cause the simulation to continue until the
communication point where T >= 12.0, when the Interact service will be re-invoked. If
necessary TFIN is automatically modified (to 12.0) to extend the run. This command may be
issued at the end of a run (when Interact has been implicitly invoked by previous use of a
Continue) to extend the simulation. After a simulation run is complete, and control has
passed to the experiment, this command may not be issued (error given). It may be used,
however, after a Rerun/Restart command when control has been passed to the start of the
program, and a new run is to be undertaken.

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-4

Next

The command Next is similar to a Continue, and will cause the simulation to proceed to the
next communication point. Once control has been passed to the experiment, after a run, this
command may not be used until after a Restart/Rerun command has been issued.

Step

The command Step is similar to a Next, and will cause the simulation to proceed to the next
step point. Once control has been passed to the experiment, after a run, this command may
not be used until after a Restart/Rerun command has been issued.

Skip

With the Interpreter Skip continues the execution until the next module is encountered, and
with the Translator continues execution until next step point is reached. Primarily used for
debugging purposes with Interpreter, where repeated Skip commands should eventually pass
control to the module of interest.

Drv [driver_file]

The Drv command allows Interact commands to be taken from the specified driver file (.drv
extension). See Simulation Driver Files.

Cls

Clears the screen.

Modules

Displays the names of package and Code modules.

Trace

Displays name of the currently active code module, and for the Interpreter, the modules which
called the current module.

Status

Presents a message indicating the status of the simulation and the Interact service.

Finish

When control has passed to the INTERACT service during (or at the end) of a simulation run,
the Finish command will cause: the run to be immediately terminated; the Terminal region
executed; and a return to the experiment. In other contexts it is equivalent to a Continue.

Enddrv

Closes the .drv file when Pause, or a Break interaction, is active.

Snapshot snap_file

Creates snapshot file of current state of the simulation, normally used at end of a run. See
Snapshot Support on using snapshots to start an execution.

Data_mod module

Sets the default data module for Set/Value commands. The format is:

data_mod module_name

If module_name is omitted, the original Code module is selected as the data module for
Set/Value commands.

Value [var_spec {,var_spec}]

Displays values of variables. When used without any options it displays the values of
variables in the current code module and any used package modules.

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-5

With options it may display all, or specific, variables in any of the code or package modules.
For example:

Value (global)kparam,qparam

causes the values of kparam and qparam in module global to be displayed and

Value (global)

displays all variable values in module global. Note that the experiment has the module name
EXP$MN.

Subscripted array elements may have their value displayed. For example:

Value ARR(2,3), ARR(2,4)

Arrays of any type, including character, may have their values displayed. The subscripts must
be integer numbers, and within the declared range specified in the ESL program.

Set var_set {,var_set}

Sets specified variables to have new values. For example:

Set X=1.0, tfin=5

will set current module's X and Reserved module's TFIN (the Reserved Package is assumed
to be used by current module - it is implicitly declared in the Experiment and all modelling
modules).

If a variable is not accessible in the current code module, or any packages used by the
current module, then it is necessary to explicitly specify the module, for example:

Set (global) kparam=-2.0, qparam=5

will set kparam and qparam located in module global. Note that the experiment has the
module name EXP$MN.

Subscripted array elements may have their values set. For example:

Set ARR(2,3)=23.0, ARR(2,4)=24.0

Arrays of any type, including character, may have their values set. The subscripts must be
integer numbers, and within the declared range specified in the ESL program.

11.3 Simulation Driver Files
A Simulation Driver File (.drv) may be specified to set parameters prior to a simulation, and
then to control the simulation. The commands that may appear in a driver file are identical to
those available in the Interact service. It may be used in conjunction with a snapshot
specification, in which case it takes effect after the snapshot has been processed. For
example:

esl -x eslfil -drv driver_file

esl -i eslfil -sc snapfile -drv driver_file

esl -i eslfil -drv

The last example does not use a driver file, but allows the user to interactively enter driver-
type commands. The interactive service is invoked immediately at the start of the program.

The driver file sets parameters and then may control the simulation run, and subsequent runs.
It is designed to be used with programs with a simple experiment, for example, the
benchmark bench5.esl (provided in the library).

-- EXPERIMENT

USE GLOBAL;

REAL: X,Y;

 CINT:=0.1;

 VANDERPOL (X,Y);

END_STUDY

Note that there is only one statement before the model call, to set CINT, and the model call
does not have any input arguments (K is an input to the model declared as a PARAMETER in

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-6

Package GLOBAL). The model input K could have been an input argument to the model, but
this example shows the alternative mechanism of using a Package for this purpose.

The following driver file (bench5.drv) may be used to control the simulation, for example:

set tfin=8.0

set k=1.0

-- start run

continue

-- Perform second run

rerun

set cint=1,nstep=10

set k=2.0

--Interact at T=5

cont 5

Change value of K

set k=6

cont --and complete run

Note that text following "--" is ignored and may be regarded as a comment. This file specifies
two runs of the model: the first with K set to 1.0, and TFIN set to 8; the second with K set to 2,
CINT to 1, and NSTEP to 10. In addition the second run Interacts at T equal to 5.0 and sets K
to 6 before continuing to the end of run.

Driver files may be specified during INTERACT service, using the Drv command.

Driver files may include a Pause command which switches control from the .drv file to the
user to allow monitoring or changing data. In the INTERACT service a simple Continue
causes the next command to be taken from the .drv file; this is equivalent to a Drv command
(with no file specified).

In a .drv file a Pause should normally be followed by an execution command such as
Continue, for example:

....

continue 8.0

pause

-- continue to end of run

continue

pause

rerun

....

Note that the line starting with "--" is interpreted as a comment.

During .drv file processing a user Break/Ctrl-C temporarily suspends the .drv file control. A
simple Continue continues the simulation with commands being taken from the .drv file at the
next scheduled interaction point.

The Pause is similar to a user Break/Ctrl-C, in that any subsequent simulation execution
command, except a simple Continue, will cause the driver file to be closed and abandoned.

In addition, the INTERACT command "Enddrv will close the .drv file when Pause, or a Break
interaction, is active.

Interact commands Next, Step and Skip may now be used to extend a simulation run. If used
at the end of run TFIN is increased by the value of CINT. These commands may also be used
to start a run.

Embedded simulation may use a .drv file for basic sequential operations (not Rerun/Restart).

11.4 RESUME and RESTART
The ESL RESUME and RESTART keywords are prefixed to a MODEL call to cause the
model to restart, or resume the last simulation run undertaken by the program.

In this context restart means: start the simulation from the conditions that prevailed when it
was last terminated, but with time reset to its initial value (T = TSTART). The simulation

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-7

bypasses the INITIAL region, and the COMMUNICATION region is executed prior to
simulation.

Resume means continue the simulation from the conditions that prevailed when it was last
terminated, and with time also continuing from that point (note that TFIN must be increased
for this to work). The simulation bypasses the INITIAL region, and also the first
COMMUNICATION region before continuing the simulation. For example:

RESUME VANDERPOL(X,Y:=K);

11.5 Snapshot Support
A "snapshot" of the state of the system being simulated may be taken for the purpose of
starting, or continuing, a simulation from that particular state at some later time. Normally a
snapshot will be taken during a simulation run, or the end of a run, and at a point when control
has passed to the end of the model communication region.

Taking a snapshot creates a snapshot file to save the state of the simulation, and it may be
created by:

(1) Snapshot ESL program statement.

For example:

snapshot snapfile;

or

snapshot;

In the first case a file snapfile.snp is created to contain the present state of the system, and
in the second case the user is prompted for the filename. If no file extension is provided a
default extension, .snp, is used.

(2) Snapshot Interact command

Commands may be issued during the Interact service to take a snapshot, for example:

snap snapfile

or

snap

The action is the same as that described above, for the snapshot program statement. An
Interact snap command may appear in a driver (.drv) file processed either by an executing
simulation or from ESL-Studio/ESL-SEC.

(3) During ESL-Studio/ESL-SEC operation

A snapshot file may be created by clicking the Take Snapshot... button in the Advanced
Simulation Options... section of the Simulation Execution Control window, and then specifying
the snapshot filename in the Save window. The same conventions as described above are
used for the default extension to the filename.

In each case the snapshot file is a text file containing INTERACT style commands to set user
variables to values they had at the time the snapshot was taken. The file also contains
comments that specify: the time and date of the snapshot; the ESL Revision number; and the
name of the program that generated the snapshot.

The snapshot file may be used to start a simulation run in the following ways:

(1) As a command line parameter

The command line to invoke a simulation execution may have command line parameters to
start the simulation from the state which prevailed when a snapshot was taken. For example:

esl -x eslfile -sc snapfile

or

esl -i eslfil -s snapfile

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-8

The snapshot filename is assumed to have an extension of .snp if an explicit extension is not
provided. The -sc option means continue the simulation from the state defined in the
snapshot file, with a start time determined by the T taken from the snapshot. The -s option
means start the simulation from the state defined by the snapshot, but with a time set to
TSTART (the start time of the original snapshot run). In both cases T and TFIN are displayed,
and control is passed to the Interact service so the user may change the duration of the
simulation run. Simulation execution is started by the Interact command Continue. This user
interaction can be avoided by specifying a -TFIN option on the command line, for example:

esl -x eslfil -sc snapfile -tfin=30

This causes the simulation to start without user interaction, and with a value of TFIN equal to
30 seconds. The option -TFIN=0 is interpreted as use TFIN from snapshot and do not interact
with user. Both Translator and Interpreter execution support snapshot starts.

(2) Interact commands

The Interact service commands Restart and Rerun may have additional parameters to
perform a snapshot start. For example:

restart -s snapfile

or

restart -sc snapfile

are equivalent to the above command line specifications. That is, the program is started with
either a snapshot start or continue. A Restart closes all files, except a command (.drv) file,
and is equivalent to a program start. In a similar manner the Rerun command may have
additional parameters, for example,

rerun -s snapfile

or

rerun -sc snapfile

Note that a Restart command is equivalent to starting the program from the beginning, while
a Rerun appends the new run to previous runs. A Rerun does not close files, therefore
previous runs, and the snapshot run, will all appear in any Prepare files. An Interact Continue
command is required, following a Restart/Rerun, in order to execute the simulation.
Restart/Rerun commands specifying a snapshot start may appear in a driver (.drv) file
processed by either the executing simulation or from ESL-Studio/ESL-SEC.

(3) When running a simulation from ESL-Studio/ESL-SEC

A snapshot Start, Restart or Rerun is achieved by first clicking the Load Snapshot button.
The -s option is specified by checking the Reset Time box. Note that the Start/Continue
button has to be clicked to execute the simulation. With snapshot starts execution begins at
the first model call in the experiment. A simulation snapshot -sc snapfile, or a -s snapfile,
both start the simulation by executing the dynamic, step, and communication region prior to
advancing the simulation. The model INITIAL region code is NOT executed. The difference
between the two methods is simply that the simulation starts with TSTART for a -s, and the
simulation time (T) of the snapshot for a snapshot continue (-sc).

Considerations when using Snapshots

Care has to be taken when using snapshots starts, and the following situations should be
noted:

• The snapshot feature is designed to be used with ESL simulation programs which
have a simple experiment. Problems may arise with complex experiment code, and in
cases where more than one model call occurs in the experiment. For example, an
experiment which opens a file should not be used with snapshots. On starting from
the snapshot the experiment code is skipped, and execution starts at the first model
call. Note that ESL FILE variables are not saved/restored during snapshot operations.
They do not reflect the state of the simulation, but that of the currently executing
simulation program.

Chapter 11 ESL Run Control

ESL Simulation Software - Development Guide 11-9

• ESL programs with time dependencies, including those which use time dependent
submodels (for example, submodel "modult" and the ESL-Studio square wave
simulation element), work with a snapshot -sc snapfile but not with -s snapfile.
Starting a simulation with time reset to its initial value causes any time dependent
computations to be incorrect (the model has remembered the time dependent values
at the point of the snapshot).

• Programs which depend on counting within the communication region may be upset
by snapshot starts. For example, if the last communication region executed just prior
to the snapshot is at time 10.0, then the first communication region executed
following a snapshot continue will also be at time 10.0. This means that the
communication region at time equal to 10.0 will be executed twice - when snapshot is
taken, and again at snapshot start. Hence the communication region counters will be
incorrect (the INTERACT service may be used to correct counters before continuing
the simulation).

• User program character variables and arrays are saved (to file) during a snapshot.
The restricted line width used for snapshot files (132 characters) limits the size of
ESL character strings which may be fully represented by the Interact command
format used for snapshot files. In this context the last dimension of a character array
is also regarded as a string. Some character information will be lost during a
snapshot start which involves large character strings.

• Dynamic arrays (for example, in library submodel delay.esl) are not saved by a
snapshot, and therefore are not restored when starting from the snapshot. In these
cases the dynamic array is set to zero on a snapshot start. The reason for this
situation is that snapshot data is restored to user variables prior to program
execution, and it is later, during execution, that the dynamic array is allocated its size
and storage.

Emulated Segments and Snapshots

For a simulation using emulated segments the snapshot should be taken when the model is
active, not from an emulated segment. This is because the Reserved variables (both user
visible and internal) are switched when a segment is active.

Emulated segments behave in a similar manner to remote segments. At a snapshot start,
either -s snapfile or -sc snapfile, the segment will restart its simulation by executing its
INITIAL region, and starting its segment simulation completely afresh.

Note that emulated segment package data, and data that is not explicitly initialised, is set
during a snapshot start. This is in contrast to remote segments, which are unaware of the
snapshot start in their model. Also note that an emulated segment inherits default values of
Reserved variables (for example, TSTART, TFIN, CINT etc) from its model. Segments used
as both emulated and remote, require that Reserved variables should be explicitly set in the
initial region of the segment.

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-1

CHAPTER 12

12 External Procedures
This section describes how external FORTRAN, C and C++ procedures and functions can be
accessed from an ESL program.

Contents:

• Introduction

• External FORTRAN and C Routines

• External C++ Routines

12.1 Introduction
ESL translated programs allow external routines to be specified by an EXTERNAL statement
and called either as functions or subroutines/procedures.

The first section (External FORTRAN and C Routines) applies when the ESL program has
been translated to FORTRAN and describes the calling conventions for FORTRAN and C
routines, and how to access to COMMON storage.

The second section (External C++ Routines) applies when the ESL program has been
translated to C++ and describes the calling conventions for C++ routines.

This is not a comprehensive definition of all aspects of combining FORTRAN, C and C++
coded modules, but it should provide sufficient information to allow effective use of external
routines written in FORTRAN, C or C++ from ESL. The following topics are covered:

• The computer compilation environment.

• The conventions used by ESL programs to call external routines.

• FORTRAN and C routine argument conventions for both scalar and array data and
for ESL array structures (including characters).

• Access to FORTRAN common storage blocks.

• Conventions for calling FORTRAN routines from C code.

• Conventions for calling external C++ routines.

12.2 External FORTRAN and C Routines
Contents:

• Environment

• External Routines

• Scalar Arguments

• FORTRAN Character Arguments

• FORTRAN Array Arguments

• ESL Array Arguments

• Common Block Data

• Calling FORTRAN routines from C Code

Environment

An ESL program, which has been translated to FORTRAN, may specify external routines
which are to be presented as FORTRAN or C code. The section External procedures
specifies the way in which external routines/procedures must be declared in an ESL program
in order to call user coded FORTRAN or C procedures. For example, an ESL program
eslprg.esl may call FORTRAN and C routines in files forprg.f and cprg.c respectively. The
commands to compile and link the three files are:

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-2

To compile, translate and FORTRAN compile eslprg.esl, and produce files: eslprg.hcd,
eslprg.f, eslprg.obj:

esl -c eslprg

esl -tf eslprg

esl -f eslprg

To FORTRAN compile forprg.f, to produce forprg.obj:

esl -f forprg

To C compile cprg.c, and produce cprg.obj:

esl -cc cprg

To link eslprg.obj, forprg.obj and cprg.obj to produce executable file eslprg.exe:

esl -fl eslprg forprg cprg

Note that the above file extensions are for MS Windows. For Linux, the corresponding
extensions: .f, .o and no extension for the executable apply.

External Routines

In ESL an external routine must be declared using the EXTERNAL keyword, e.g.:

EXTERNAL EXTROUT;

EXTERNAL INTEGER: EXTFUN;

If no arguments are associated with the external routines then the FORTRAN code is:

 SUBROUTINE EXTROUT

* body of routine.

*

 END

 INTEGER FUNCTION EXTFUN()

* body of function

*

 EXTFUN = integer_value

 END

and the equivalent C code is:

void extrout_()

{

 /* Body of routine.

 */

}

int EXTFUN_()

{

 int i;

 /* Body of function, return result from local variable i

 */

 i = integer_value;

 return (i);

}

Note that the routine names are in lower case, and generally an underscore character is
appended.

For other function types refer to the FORTRAN manual's description of FORTRAN-C
interface. Non-integer functions tend to be machine dependent, and we strongly advise that
users should consider the use of a subroutine call rather than a function call in these cases.

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-3

Scalar Arguments

If the ESL EXTERNAL subroutine or function has scalar arguments, e.g. ESL statement:

EXTSUB(R,I,L);

where ESL declarations are: real for R; integer for I; and logical for L. The corresponding
FORTRAN subroutine declaration is:

 SUBROUTINE EXTSUB(R,I,L)

 REAL R

 INTEGER I

 LOGICAL L

 R=7.12

 I=152

 L=.TRUE.

 END

and the C equivalent:

void extsub_(r,i,l)

float *r;

int *i;

int *l;

{

 *r = 7.12;

 *i = 152;

 *l = 1;

}

Note that the arguments are passed by reference (addresses not values), and so the
arguments are pointers to float or int. In the C code, the argument corresponding to the ESL
real argument is declared as a float. This corresponds to the use of the ESL interpreter or
FORTRAN translation, or single precision for the C++ translation. Also note that logicals are
treated as integers with zero meaning false.

FORTRAN Character Arguments

ESL generated FORTRAN does not pass FORTRAN character variables as arguments (they
are treated as ESL arrays, see below), but the ESL library support routines do pass such
variables. Equivalent FORTRAN and C routines receiving FORTRAN character variable
arguments are illustrated by extending the above example:

 SUBROUTINE EXTSUB(CH,R,I,L)

 CHARACTER*(*) CH

 REAL R

 INTEGER I

 LOGICAL L

 INTRINSIC LEN

 /* The next statement sets integer arg I to length of

 /* character variable.

 I=LEN(CH)

 END

and the C equivalent:

void extsub_(ch,r,i,l,chlen)

char ch[];

float *r;

int *i;

int *l;

int chlen;

{

/* Set integer arg i to length of FORTRAN character argument */

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-4

 *i = chlen;

/* Char values are accessed by ch[0] to ch[chlen-1] */

}

An alternative declaration for the ch variable is:

char *ch;

....

/* Char values are accessed by *(ch+i),

 * where i is in range 0 to chlen-1

*/

Note that a null character is not appended to the character string, but the length is available
as an extra argument (chlen) at the end of the argument list, and it is passed by value not
reference.

FORTRAN Array Arguments

ESL generated FORTRAN does not pass FORTRAN arrays as arguments (they are treated
as ESL arrays, see below), but the ESL library support routines do pass such variables.
Equivalent FORTRAN and C routines receiving FORTRAN array arguments are illustrated by
modifying the above example:

 SUBROUTINE EXTARR(RA,IA,LA)

 REAL R(*)

 INTEGER I(*)

 LOGICAL L(*)

* Arrays are accessed by RA(1) to RA(N) where N is the

* declared array length.

* N could be passed as an argument.

 END

and the C equivalent:

void extarr_(ra,ia,la)

float ra[];

int ia[];

int la[];

{

/* Array values are accessed by ra[0] to ra[n-1],

 * where n is the declared array length,

 * n could be passed as argument.

*/

}

An alternative array access mechanism is:

/* Access to array elements by *(ra+i),

 * where i is in range 0 to n-1

*/

Note that two or more dimension arrays are stored in FORTRAN in column-major order, and
in C in row-major order. That is the storage order is not the same, and it is advised that such
arrays be avoided. If it is necessary to pass such arrays it is possible to treat the C array as a
single dimension array and to use a subscript expression to account for the column major
order of FORTRAN. In this case the C code would need to know the size of each dimension
except the last.

ESL Array Arguments

In ESL generated code, arrays (including character variables and arrays) are passed as
arguments by using a pointer to an ESL array structure.

FORTRAN and ESL array structure

The first point to make is that the ESL package (FORTRAN common) is the easiest way to
pass arrays between ESL and FORTRAN code, see next section.

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-5

The ESL array structure comprises an array of 32-bit integers describing the ESL array; this
description is sometimes known as a "dope vector", and it is organised as follows:

machine address of data (cast to type)

type of data, 1=real, 2=int, 3=log, 4=char

number of dimensions: 1, 2 or 3

inc1

len1 - length of first dimension

inc2

len2 - length of second dimension

inc3

len3 - length of third dimension

The inc entries give the address increment between successive elements of a dimension.
These increments are expressed in units corresponding to the type of variable. For example,
for type real, an inc of 1 means successive real data items are adjacent, while an inc of 3
means there are two real data items between successive elements of a dimension. Note that
for a one dimension array the dope vector does not have entries for inc2, len2 etc, and a two
dimension array does not have entries for inc3 and len3.

Array Arguments for FORTRAN Externals

ESL arrays are not identical to FORTRAN or C arrays. They are "structures" which enable
sophisticated slice operations, and consequently access from FORTRAN (or C) is more
complex.

Numerical array arguments

This section illustrates how ESL numerical arrays may be processed by an external
FORTRAN routine. The following ESL program is used to illustrate the technique:

study

-- Declaration of external routine/procedure

 procedure extproc(real: rarr(*); integer: iarr(*)) external;

-- experiment

 real: ra()/1,2,3/;

 integer: ia()/100,200,300/;

 extproc(ra, ia);

 print "ra=",trnsp(ra);

 print "ia=",trnsp(ia);

end_study

The external FORTRAN routine is:

 SUBROUTINE EXTPROC(RARR, IARR)

* Pointers to ESL real and integer arrays

 INTEGER RARR, IARR

* Access esl run-time support library

 REAL RGAREX

 INTEGER ISBC3X,JLEN1X,IGAREX

 EXTERNAL RGAREX,ISBC3X,JLEN1X,IGAREX

 EXTERNAL RPAREX, IPAREX

*

 REAL X

 INTEGER J,ADDRES

 PRINT *,'Length of real array arg=',JLEN1X(RARR)

 PRINT *,'Length of integer array arg=',JLEN1X(IARR)

*

* Get machine address for subscripted element RARR(3,1,1)

* NB the following routine assumes first three args are the

* subscripts of a 3-D array, use 1 as subscripts for the

* non-existent second and third dimensions.

 ADDRES=ISBC3X(3,1,1,RARR)

* Get the value of the subscripted element

 X= RGAREX(ADDRES)

* and replace it by its negative value

 CALL RPAREX(ADDRES, -X)

* Perform same operation for 2nd element of integer array arg

 ADDRES=ISBC3X(2,1,1,IARR)

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-6

* Get value of subscripted element, replace it by its negative

 J= IGAREX(ADDRES)

 CALL IPAREX(ADDRES, -J)

 END

The result of executing the program is:

 Length of real array arg= 3

 Length of integer array arg= 3

 ra= 1.0000 2.0000 -3.0000

 ia= 100 -200 300

With array access from external routines the lower subscript bound must be treated as unity.
ESL arrays declared as array_0(0 .. 3) or array_1(4) each have a lower-subscript-bound of 1,
and an upper-bound of 4, as far as the above methods are concerned. Both arrays may be
correctly accessed by the methods presented above.

For arrays with dimensions greater than one, ESL run-time support routines JLEN2X and
JLEN3X return the lengths of the second and third dimensions respectively.

ESL logical arrays should be treated as integer, with zero indicating false, and one true.

Simpler numerical array arguments

The following shows a simple way in which non-sliced arrays may be passed to an external
FORTRAN (or C) routine. Note that the previous section is more general; it uses methods
which are applicable to any ESL numerical or logical array, including sliced arrays. With this
simple method the call to the external routine uses the first element of the array as an
argument, e.g.:

ext_routine(array(1));

and then the external routine could be:

 SUBROUTINE EXT_ROUTINE(ARR)

 REAL ARR(*)

 ARR(2)=

Passing character strings

Consider the following ESL program:

study

 procedure extsub(character: c(*)) external;

-- experiment

 character: ch/"1234"/;

 print "ch=", ch;

 extsub(ch);

 print "ch=", ch;

end_study

The external routine extsub, in file extsub.f, illustrates how the ESL character argument is
accessed.

 SUBROUTINE EXTSUB(DOPE)

* DOPE is integer pointer to ESL array/ character variable

 INTEGER DOPE

*

 INTEGER ADDRES, LENSTG

 CHARACTER*10 STRING

* Access esl run-time support library

 INTEGER ISBC3X,JLEN1X,CGAREX

 EXTERNAL ISBC3X,JLEN1X,CGAREX,CPAREX,UNPC1X

 INTRINSIC ICHAR

*

* Get machine address for subscripted element CH(2,1,1).

* NB the following routine assumes first three args are the

* subscripts of a 3-D array, you must use 1 as subscript

* for the non-existent second and third dimensions

 ADDRES=ISBC3X(2,1,1,DOPE)

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-7

*

* Set the selected (2nd) element of character string to 'B',

* ie last arg of CPAREX is ASCII value of character.

 CALL CPAREX(ADDRES,ICHAR('B'))

*

* Use CGAREX to access CH(2,1,1) to confirm contents

 IF(ICHAR('B').NE. CGAREX(ADDRES)) STOP 'ERROR'

*

* Determine length of char arg

 PRINT *,'Length of character arg =',JLEN1X(DOPE)

*

* Extract the character string from ESL array DOPE, and place

* into FORTRAN character variable STRING. The numberof chars

* transferred is returned in LENSTG (LENSTG <= LEN(STRING)).

* Note truncation or space-fill used for incompatible lengths.

 CALL UNPC1X(STRING,LENSTG,DOPE)

*

 PRINT *,'Character arg is <',STRING(:LENSTG),'>'

 END

The above program is executed with:

esl -c ext_ch

esl -tf ext_ch

esl -f ext_ch extsub

esl -fl ext_ch extsub

esl -x ext_ch

and this results in:

ch=1234

Length of character arg = 4

Character arg is <1B34>

ch=1B34

C code and ESL array structure

The dope vector presented in the last section to define an ESL array structure maps naturally
on to a C structure. For example, a C routine to process an ESL array argument could have
the following form:

#define ESL_FLOAT_ARRAY 1

#define ESL_INT_ARRAY 2

#define ESL_LOGICAL_ARRAY 3

#define ESL_CHAR_ARRAY 4

typedef struct

{

 int inc;

 int len;

} dim_info_t;

typedef struct

{

 union {

 char *c;

 int *i;

 int *j;

 float *f;

 } data;

 int type;

 int dimension;

 dim_info_t dim_info[3];

} esl_array;

void print_array_(dope)

esl_array **dope;

{

}

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-8

An example C routine, array.c, is provided in the ESL library which prints any type of ESL
array to the standard output channel. This routine is equivalent to the ESL print functions for
arrays.

Common Block Data

The ESL package creates a common block which may be accessed by either FORTRAN or C
routines. The simplest way to proceed is to produce an ESL program with a package module
that contains the data required for the common block. Then translate the program and extract
the common block and associated declarations, for example:

package com_data;

 real: real_value,real_arr(2,3)/1.1,2.1,1.2,2.2,3.1,3.2/;

 constant real: con_real/12.34/;

 integer: integer_value;

 character: char_arr(5);

 file: file_hand;

end com_data;

FORTRAN equivalent extracted from translator produced FORTRAN:

REAL REAL_VALUE,AD$REAL_ARR(2,3)

INTEGER INTEGER_VALUE,AD$CHAR(2),FILE_HAND

COMMON/COM_DATA/REAL_VALUE,AD$REAL_ARR,INTEGER_VALUE,

 1 AD$CHAR_ARR,

*FILE_HAND

SAVE /COM_DATA/

*

* Note the AD$ prefix indicates actual data and may be removed.

* Access to data follows normal FORTRAN conventions, except character

* data which is stored in an integer array, with ascii codes packed

* according to the natural machine order, ie hi-endian machines store

* the ascii code in most significant 8-bits of an integer word.

C equivalent:

extern struct comtyp {

float real_value;

float real_arr[6];

int integer_value;

int char_arr[8];

int file_hand;

};

extern struct comtyp com_data_;

/*

* Note the underscore appended to com_data, and lower case

* form.

*

* The real array is accessed as com_data_.real_arr[0] to

* com_data_.real_arr[5], and note that FORTRAN two and three

* dimension arrays are stored in column major order. For

* example:

*/

com_data_.real_value = 7.1;

/*

* ESL characters are packed into an integer array, therefore

* two integer words (four chars per word) are required to

* store the 5 characters. In this code we may address the

* packed characters directly, ie com_data_.char_arr[0] to

* com_data_.char_arr[4].

* The character array in the structure should be dimensioned to

* correspond to the integer array,

* ie size 8 characters which corresponds

* to two integer words.

*/

com_data_.char_arr[0] = 'a';

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-9

Calling FORTRAN routines from C Code

ESL library (FORTRAN) routines, or other FORTRAN routines, may be called from C code.
Consider the FORTRAN routine EXTSUB presented above, ie:

SUBROUTINE EXTSUB(CH,R,I,L)

CHARACTER*(*) CH

REAL R

INTEGER I

LOGICAL L

INTRINSIC LEN

....

* The next statement sets integer arg I to length of character

* variable.

 I=LEN(CH)

 END

The C code to call this routine could be:

....

char ch[20];

float r;

int i;

int l;

extern void extsub_();

....

extsub_(ch, &r, &i, &l, 20L);

Note that the addresses of the scalars are passed, the array (ch) is already a pointer
(address) variable, and that the length of the character array is passed by value to be the
FORTRAN length of character variable. Note that FORTRAN character variables do not
expect a null character.

12.3 External C++ Routines
An ESL program, which has been translated to C++, may specify external routines which
invoke external user coded C++ procedures. The section External procedures specifies the
way in which external routines/procedures must be declared in an ESL program in order to
call user coded C++ procedures. This is illustrated in the following:

• ESL Use of C++ Externals

• External C++ Procedures

• Understanding External C++

• Results of Example Program Execution

ESL Use of C++ Externals

The following example ESL program illustrates how external C++ procedures may be called
from an ESL program. (The program is provided in the file ext_ex.esl in the esl examples
directory.)

study

 procedure scal_arg(real: x; integer: j) external;

 procedure array_arg(real: r_arr(*); integer: i_arr(*,*))

 external;

 procedure char_arg(character: c_arr(*)) external;

 real: a/0.2345/; integer: b/9870/;

 real: ra()/1.0, 2.0, 3.0/;

 integer: ia(2,3)[11, 12, 13,

 21, 22, 23];

 character: ca["abcdef"];

 print "Before a,b=", a,b;

 scal_arg(a,b);

 print "After a,b=", a,b;

 print "Before ra=",trnsp(ra),/,"b=",/,ia;

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-10

 array_arg(ra,ia);

 print "After ra=",trnsp(ra),/,"b=",/,ia;

 print "Before ch <",ca,">";

 char_arg(ca);

 print "After ch <",ca,">";

end_study

Note that a ":=" is used to separate output from input arguments; this distinction is often
necessary in modelling code, e.g.:

scal_arg(:= a, b); -- a and b regarded as input args

scal_arg(a:= b); -- a regarded as output, and b as input arg

The following commands are used to produce C++ source code corresponding to the above
example:

esl -c ext_ex

esl -tcc ext_ex

External C++ Procedures

The following example external C++ procedures are provided in file ext_cpp.cpp in the esl
examples directory:

// ext_cpp.cc/cpp

#include "rt_sup.h"

void Scal_arg(real &x, int &j)

{

 // add 1.0 to x

 x = x + 1.0;

 // add 6 to j

 j += 6;

}

void Array_arg(s__array *r_arr, s__array *i_arr)

{

 s__simulation_c* s = r_arr->s_; // Simulation context.

 s__arr_c& s__arr = s->s__arr; // To access ESL arrays.

 int i, j;

 real *fp;

 int len1= s__arr.len1(r_arr);

 for (i= 1; i <= len1; i++)

 {

 fp= s__arr.rsub(r_arr, i);

 *fp= *fp + i * 10;

 }

 //

 // Check dimension of i_arr

 if(s__arr.dims(i_arr) != 2)

 // Error no two dimensions, use ESL exit,

 // with return error status of 1

 s__esl_fin(s, 1);

 int *ip;

 len1= s__arr.len1(i_arr);

 int len2= s__arr.len2(i_arr);

 for(i= 1; i <= len1; i++)

 for(j= 1; j <= len2; j++)

 {

 ip= s__arr.isub(i_arr, i, j);

 *ip= i * 100 + j * 10;

 }

}

void Char_arg(s__array *c_arr)

{

 s__simulation_c* s = c_arr->s_; // Simulation context.

 s__arr_c& s__arr = s->s__arr; // To access ESL arrays (including character

variables).

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-11

 int i;

 char *cp, ch;

 int len1= s__arr.len1(c_arr);

 for (i= 1; i <= len1; i++)

 {

 cp= s__arr.csub(c_arr,i);

 ch= '1' + i - 1;

 *cp= ch;

 }

}

Understanding External C++

The following notes attempt to explain how external C++ procedures are used with ESL.

(1) The names of the external procedures start with an initial capital letter, followed by lower-
case characters.

(2) Scalar arguments, such as x and j in procedure Scal_arg, are always passed by
reference. That is the procedure declaration contains the "&" character, ie:

real &x, int &i

In cases where the ESL code contains an expression as an argument, e.g.:

scal_arg(a := b * a);

the argument is still passed by reference. This is possible as ESL creates a temporary
variable into which the expression is copied, and the temporary variable is passed as the
argument.

(3) Array arguments, including character variables, require the rt_sup.h file to be included in
the C++ source file, ie:

#include "rt_sup.h"

The file rt_sup.h contains C++ function prototypes defining the C++ Run-time support library
classes, methods, and procedures. It also defines real as double, or float if single precision
compilation is being used. In particular it defines the ESL array s__array, and the class
s__arr_c which provides C++ methods to access the array data. An instance of this class is
declared in the Translated C++ program, ext_ex.cpp, and the extern statement is used to
access that instance. The file rt_sup.h is found in the ESL executable directory (global
variable ESLPROG). This include path is automatically setup if the C++ source file is
compiled with the esl -cc command.

(4) ESL array arguments (including character variables) are always passed as pointers to an
ESL array, eg:

void Array_arg(s__array *r_arr, s__array *i_arr)

To get access to the array, you need to obtain the simulation context, and then get hold of the
instance of s__arr_c.

s__simulation_c* s = r_arr->s_; // Simulation context.

s__arr_c& s__arr = s->s__arr; // To access ESL arrays.

The class instance s__arr (of class s__arr_c) has a number of methods which provide
information about ESL arrays, and allows access to their data. The following methods are
available:

int s__arr_c::len1(s__array *array);

int s__arr_c::len2(s__array *array);

int s__arr_c::len3(s__array *array);

return the lengths of first, second and third array dimension. For an array declared with one
dimension, the non-existent second and third dimension lengths are returned as unity.

In the example, the length of the integer array is obtained by:

len1= s__arr.len1(i_arr);

Chapter 12 External Procedures

ESL Simulation Software - Development Guide 12-12

The method:

int s__arr_c::dims(s__array *array);

returns the number of dimensions (1, 2 or 3). An ESL array declared as array_1d(6,1,1) is
regarded as an array of one dimension, and array_2d(6,3,1) as an array of two dimensions.

real * s__arr_c::rsub(s__array *array, int i, int j= 1, int k= 1);

int * s__arr_c::isub(s__array *array, int i, int j= 1, int k= 1);

char * s__arr_c::csub(s__array *array, int i, int j= 1, int k= 1);

returns the address of a real/int/char array element with subscripts (i, j, k), for example:

real *rp;

rp= s__arr.rsub(r_arr, i);

Note that missing second and third subscripts are treated as unity. All arrays are internally
treated as three-dimensional, and the non-existent higher dimensions are assumed to have a
dimension of unity. With array access from external procedures the lower subscript bound
must be treated as unity. ESL arrays declared as array_0(0 .. 3) or array_1(4) each have a
lower-subscript-bound of 1, and an upper-bound of 4, as far as the above methods are
concerned. Both arrays may be correctly accessed by these methods.

Note also that the char* returned from csub is not a null-terminated C string.
To print the whole character array as a string in C++, do something like:

int len = s__arr.len1(c_arr);

char* ch0 = s__arr.csub(c_arr, 1);

print("%.*s \n", len, ch0);

(5) ESL variables declared as LOGICAL scalars or arrays are treated as integer, ie int in
C++.

(6) External procedures may be declared as functions, to return either an int or real value. In
these cases the ESL program declaration of the external must indicate a function with a
RETURN REAL, or a RETURN INTEGER, immediately before the EXTERNAL keyword.

(7) ESL array data are stored in contiguous storage only if the array is not sliced.
Furthermore, the contiguous array data are stored in column major order.

Results of Example Program Execution

The following commands compile both C++ files, link, and execute the resulting program:

esl -cc ext_ex ext_cpp

esl -ccl ext_ex ext_cpp

esl -x ext_ex

The result of executing the program is:

Before a,b= 0.2345 9870

After a,b= 1.2345 9876

Before ra= 1 2 3

b=

 11 12 13

 21 22 23

After ra= 11 22 33

b=

 110 120 130

 210 220 230

Before ch <abcdef>

After ch <123456>

