OUTLINE PROPOSALS FOR A NEW STANDARD FOR CONTINUQUS-SYSTEM
SIMULATION LANGUAGES (CSSL 81) ‘ )

Contents
1. INTRODUCTION
2. GENERAL FEATURES OF THE PROPOSED STANDARD
2.1 = Experiment and model
Model structure
2.3 Representation of discontinuities
2.4 Experimentation with the model
3. " OUTLINE SPECIFICATION FOR CSSL 81
3.1 The lexical style
3.2 Simulation program structure - the Experiment
3.3 Simulation program structure -~ the Model
3.3.1 Declarations
3.3.2 INITIAL region
3.3.3 TERMINAL region
3.3.4  DYNAMIC region

Model definition section
Submodel invocation

Sorting

Communication section
3.4 Advanced language features
3.4.1 Parallel simulation segments
3.4.2 The Submodel definition
3.4.3 Discontinuities

Basic discontinuities
Discontinuity triggers
Non-assignment conditional statements

4. CONCLUSIONS
5. ACKNOWLEDGEMENTS

6. REFERENCES






1. INTRODUCTION

This document represents the ideas of a group working in the
Simulation Laboratory, Department of Electrical Engineering,
University of Salford, regarding a possible replacement for
the 1967 SCi Standard Continuous System Simulation Language
(CSSL) (1). For a number of years now the opinion has been
increasingly expressed that for all its merits the 1967
specification has become steadily more and more out of line
with developments in computer languages and in the demands
made by users of simulation soffware.

It would be presumptuous, to say the least, to suppose that
an outline specification produced by one group, ‘even with
frequent reference to the ideas of other workers, will prove
generally acceptable without considerable modification and
improvement. Our aim has been, therefore, to present a
draft proposal as a basis for discussion and development.
Our hope is that the ideas presented here will contain
sufficient general appeal to help focus future discussions
on a replacement for the 1967 standard. The experience of
the authors with a number of Conferences and Committees
which have addressed the problem in the past few years has
convinced them that unless an "Aunt Sally" or "Strawman"

of this kind is produced, progress is likely to be very slow.

At this stage it may be helpful to describe our general
approach to producing this draft specification. First of

all we have tried to maintain a balance between two apparently
contradictory aims. On the one hand we recognise the need

to make radical changes in some aspects of the CSSL specif-
ication, for example the submodel features and the programming
of discontinuous events - on the other hand we have tried as
far as is reasonable to maintain continuity. These proposals
should therefore be seen as an evolutionary rather than

a revolutionary development.



One question which has been debated at some length in
recent years is whether the replacement for the CSSL
specification should define a combined language with all
the features required for continuous, discrete and
combined simulation. Our view is that it is necessary
first to reach agreement on the requirement for continuous
simulation. We do, however, subscribe to the view that
the route to combined simulation is eased by the proper
representation of discontinuities and hope that by paying
careful attention to this important question, we have left
the way open to an acceptable standard for combined
simulation.

Another consideration which was also borne in mind is that
any future standard should incorporate features which
facilitate implementation on multiprocessor systems.
Regarding the gquestion of implementation, a balanced
approach has been sought which will produce a standard
uncommitted to any particular method of implementation or
type of hardware whilst maintaining an awareness of likely
implementation problems.

Finally, few readers will fail to notice that many of the
proposals presented here are strongly influenced by trends
in modern programming languades and, in particular, Ada (2)
and to a lesser extent Pascal.

In conclusion, this document is presented in the form of

a discussion of our proposals with a few examples of the
style of coding we have in mind, to illustrate the main
principles. We are in a position to produce a more formal
specification but prefer to await reaction to this document
before doing so. A more detailed discussion of many of the
ideas underlying the proposals has been presented by

Hay (3).



2. '~ GENERAL FEATURES OF THE PROPOSED STANDARD

2.1 Experiment and Model

Attention is confined to continuous system simulation with
advanced discontinuity features. The concept of a simulation
study, comprising a system model and an experiment to be
performed on the model, is strongly supported. Ideally
these two aspects of the simulation study should be
represented by independent program sections so that a
particular experiment might be applied to alternative models
or a single model be subject to different experiments.

2.2 " Model sStructure

It is proposed that the INITIAL/DYNAMIC/TERMINAL structure
be retained although some modification is necessary in
details. It is further proposed that the concept of
derivative, or model definition, sections be retained within
the dynamic region to separate code which is executed

durihg the integration calculation from that . which is
executed only at each communication interval.

Most systems which are the subject of dynamic simulation are
represented in the form of a number of interconnected sub-
systems. It is proposed that the program defining the model
be capable of reflecting this type of structure by means

of program modules defining different subsystems, These
modules are seen as independent software blocks capable of
being built into different systems. To give complete
generality subsystems should themselves be capable of

being composed of small subsystems although it it appreciated
that the extent to which this nesting would be practicable
is limited,



With this hierarchical approach to system building the
program statements are seen as system primitives from

which the subsystem and systems are formed. On this basis

it is clear that all the statements used in model definition
sections must retain the CSSL practice of defining one or
more output variables in terms of one or more input variables.

Given a language of this form it is likely that libraries

of models and submodels would be established and these could
be linked together as required. This represents an

- alternative to the use of macros in current languages.

2.3 Representation of discontinuities

A major shortcoming of current CSSLs is in the area of
describing and handling discontinuous systems. In recent
years numerical techniques have been developed.(4)(5)(6)
which permit the accurate detection of discontinuities

and efficient integration across them. Techniques of this
kind are now capable of being invoked automatically from
pPprogram statements which describe dlscontlnultles of all
types naturally and economically.

There are a number of simple types of discontinuity which

are sufficiently general to justify inclusion in any
simulation language as standard functions. This was
recognised in the 1967 specification by the incorporation

of limiters, dead space, comparators and switches of different
kinds. It is recommended that a similar list of functions

be retained in the new specification. These functions do,
however, provide only a limited capability for modelling
discontinuities of more complex types.

In cases where the library of discontinuous elements proves
inadequate the language should provide an apprepriate
structure to allow users to specify the particular dis-



continuous element required. At least two current
languages, COSY (6) and ISIS.80 (7) demonstrate that
these features can be built into a CSSIL.

2.4 Experimentation with the model

The CSSL 1967 specification defined, by means of the
INTERPRETER feature, a means of providing the modeller with
some control over the running of his model. This is a
feature which has been given increasing emphasis in recent
years and modern CSSLs such as, for example, ACSL, provide
the user with a range of run-time commands by means of
which the model can be run, input data changed, output
directives changed and run-time control features (step-
length, errors, etc.) changed.

This provision does, however, fall a long way short of the
ideal and some languages (e.g. ISIS) have, in addition,
included a control section which controls the calling of
the model and permits the use of a range of procedural
statements including conditional and branching statements.
It thus becomes possible to embed the model within a main
program capable, for example, of performing iterative
sequences of runs such as in parameter optimisation studies.

It is proposed that this feature be included in the
specification with effectively the flexibility of a general
purpose procedural language (based on Ada constructs in
preference to FORTRAN). The model execution could be invoked
by a statement similar to the SIM statement in ISIS.



3. OUTLINE SPECIFICATION FOR CSSL 81

Having discussed the general principles, it is appropriate
to examine how they may be achieved in practice. The
lexical style is first considered which determines how
elements of the language appear in a user's simulation
program. The program structure and statement detail are
then examined.

3.1 The lexical style

‘The lexical style determines how the various elements of

the language (identifiers, numbers, operators) are presented
in a users program. It also determines the general
Presentation or format of the program. The proposed style
is based on the Ada specification (2). This does hot,
however, influence either the syntax or semantics of the
language. In fact a FORTRAN-like syntax and meaning
(semantics) may still be employed. The original CSSL
specification took a similar view with regard to its lexical
‘style.

Ada is a powerful general. purpose language which is rich in
advanced features. A simulation language has special
simulation features but does not need to provide anything
like the full range of Ada features. The lexicon
specification proposed is a subset of that available for
Ada. Some delimiters appropriate for sophisticated
camputation may be omitted and certain simplifications may

be made.

A lexical style based on Ada has the following major
advantages over competing styles.



a) Programs using the Ada style are well structured,
readable and self-documenting (to a certain extent), and it
imposes sensible rules on allowable program statements and
structures. There is also an underlying trend towards

this style by computer users.

b) The program presentation allows efficient conversion
processes to obtain an equivalent program in an executable
form.

The objectives of a general purpose language such as Ada

and a language for the specific task of simulation are
different. Although our proposal will always default to

the Ada style it should be clear that where there is conflict
the simulation requirements will override other considerations.

The examples given later in this paper are written in the

proposed style.

3.2 Simulation program structure - the Experiment

It has already been argued that the experiment and the model
should be separated. The program code to define a
simulation experiment may be expressed in most general
purpose scientific computer languages such as FORTRAN or
Ada. Only minor extensions to a general purpose scientific
language code, or procedural code, are required to
adequately describe a simulation experiment. Note that the
experiment is a sequential type of operation as opposed

to the actual simulation solution which represents parallel
processes. ‘

It is proposed, therefore, that the experiment should be a
complete program module, that is a unit similar to a



FORTRAN main program or subroutine. To achieve portability
the form of the program module will be specified by the

new standard! The form of the experiment module will be

a considerably reduced subset of Ada. The subset chosen
will allow conversion or translation to an equivalent
FORTRAN module as well as conversion to an Ada program.

The data types will be restricted to those permitted in

the model description section of the program, for example,
single or array variables of type real, integer, logical
and enumeration. It is accepted that other data types

such as icharacter‘, double precision, compiex and

records may be regarded as extensions to the specification..

The following program example illustrates the form of the
proposed experiment module.

- comment on start of declarations
DONE: logical (false); =-- initial value given to DONE
PAR, NEW_PAR: real;
RESULT: real;
DELTA: constant real (0.01l);
- declare interface to external library routine

- procedure OPTIMISE_SV (FLAG: out logical; NEXT_X:
out real; OF, X, DX: in real) external;

- experiment start

PAR:= 0.5;
while not DONE
loop

-- invoke simulation
solve PLANT (RESULT:= PAR);
-- 1invoke mathematical library optimiser
OPTIMISE_SV (DONE, NEW_PAR, RESULT, PAR, DELTA);
| PAR: = NEW_PAR;
end loop;
- print result
print "Result =", RESULT," for parameter = ", PAR;

end experiment;

-



This program experiment repeatedly solves the simulation
model identified by PLANT. The only direct communication
between experiment and model is through the model input
variable PAR and the model output variable RESULT. A
mathematical iibrary routine is used to predict values
for PAR which will lead to an optimised value for RESULT.

The experiment expressed in a sequential general purpose
scientific language style controls the solution (simulation)
of one or more models. Communication of data between the
experiment and the models is achieved by the model argument
list and also by means of a pre-defined simulation
environment. This environment means that certain reserved
variables are assumed to be declared in both the experiment
and the model. The reserved variables include: the
dependent variable of integration (T), commundcation
interval (CINT), end of run value of the independent variable
(TFIN) and other variables describing the integration
process. Users may accept the default values for reserved
variables or override the defaults either in the model or in
the experiment. Provision would also be made to rename
reserved variables to suit a particular problem, for example
the declaration:

X: new T;
makes X the independent variable instead of T.
Note that this approach does not preclude the possibility
of employing different integration methods in the same
simulation (see section on model segments).

3.3 Simulation program structure - the Model

The model has the job of describing a physical system and
information relating to how a single simulation run is to
be performed. Multiple runs may, of course, be invoked

from the experiment.



The main structure of the model follows the ideas expressed
in the original CSSL specification in that there is an
optional INITIAL region, always a DYNAMIC region, and an
optional TERMINAL region. Pre-run initialisation is
undertaken in the INITIAL region; the DYNAMIC region
describes the parallel processes of a physical system and
~information relating to the control of the simulation;

and the TERMINAL region allows end-of-run calculations to
be performed either to produce output or to calculate
results which are to be returned to the experiment. - Note
that control méy only pass from the TERMINAL region to the
calling experiment. Control may not pass directly from
the TERMINAL to the INITIAL region. A further model may
be invoked from all regions except the model definition
section of the DYNAMIC region.

The model argument list is separated into two parts: an

' output and input list. Variables that appear in the ihput
list communicate data from the experiment to the model, and
variables in the output list communicate end-of-run
information to the experiment. An input list argument

is regarded as a constant from the model's point-of-view
and its$' value may not be changed. An output list variable
is considered to have no value (may not be used) until its
value is defined in the model. Note that for simulation
models (unlike Ada) an argument may not normally act as both an
input and an output argument.

Further informaticn may be passed from the experiment to
model by the predefined simulation environment. The
following example shows how a model uses the predefined
simulation environment.

-10-



MODEL PLANT (RESULT:=PAR) ;
A,XFINAL: constant real (36.0, 100,0);
X: real (0.0);
INITIAL
RESET; -+ restores conditions at start of
~~previous run
CINT:=- 0.25;
ALGO:=- FS_RKA;
TFIN:=- 2.5;
DYNAMIC
X' 2= A* (XFINAL-X)-PAR*X!; _
~ RESULT:= INTGR(T* (XFINAL-X)**2,0,0);
- Communication
TERMINATE RESULT > 1000.0;
prLOT T7,X, 0.0, TFIN, 0,0, 160,0
) PREPARE T,X,X', RESULT;
- TERMINAL :
if T < TFIN then
print "result large run aborted";
end if;
end;

3.3.1 Declarations

The model requires all identifiers to be declared, but

a pre-defined declaration of simulation variables is the

default.

For example, T, CINT, ALGO, TFIN and FS_RK4

are all assumed to be declared in the predefined environment

and therefore do not require re-definition in the model.
The variable T takes the default value of zero. All other

-11-



variables, however, require explicit declaration.

The types of the model arguments have defaulted to type
real. TIf the RESULT had been of type integer then the
first statement could be:

MODEL PLANT (RESULT: integer:= PAR:real)

The aggregate (36.0, 100.0) following the introduction

of A and XFINAL gives the constant values of these variables.
The aggrégate (0.0) following the introduction of X gives

an initial value for X which is restored on each model
invocation.

Arrays of the basic types could have been introduced by
declarations of the following forms:

VECTOR: array (l.. 10) of real:;

MATRIX: array (1..2, l.. 3) of integer:; :

TABLE: array (l..4) of real (2.0, 4.0, 8,0, 16.0);

DY _ARR: array (l..N) of real; -- where N is an argument

Arguments may also be declared as arrays, e.g. MODEL PLANT
(RESULT: array(*) of real: = PAR). The * means that the
dimension of the array is inherited from the calling module.

It is appropriate to note that variables used in a model
fall into a small number of classes which are:

(a) Constarts which do not change values at any time.

Model input arguments are regarded as constants during
the model execution.

-12-



(b) Parameters which remain constant iquring the actual

simulation, that is during the period the DYNAMIC region
is being processed. These variables are given values
in the INITIAL region.

(c) Model variables (algebraic) should only be given

values in the DYNAMIC region. These variables represent
the output of a block representing a part of the physical
system. The values for algebraic model variables require
calculations unlike history variables,

(d) Model variables (history) are similar to their

algebraic counterparts but their current values depend on the
past (history). An integrator or delay function output is

a history variable. Unlike the algebraic variables it is
appropriate to give these variables initial vaiues in the
INITIAL region.

(e) Output variables only appear in the terminal region

and are used in connection with direct output (to graph,
file, printer etc.) from the TERMINAL region or are output
arguments of the model.

Note that model output arguments may only be in classes (c),
(d) and (e) and input arguments in class (a). This indicates
the class (b) parameters are always local to the model. A
model argument output variable of class (d) (history) may

act as both input and output variable from the experiment's
point of view.

3.3.4 INITIAL region

The INITIAL region is expressed in procedural code enhanced
by a small number of special simulation statements such as

-13-~



RESET. The purpose of the region is to set values for
parameters, give initial values to history variables and
possibly produce some form of pre-run output. At the
physical end of the initial region the dynamic region

is automatically entered and the simulation run is started.

3.3.3 TERMINAL region

Following a run the procedural code of the TERMINAL region
sets output variables and produces output before. passing
control back to the calling experiment.

3.3.4 DYNAMIC region

The DYNAMIC region unlike the other regions is not expressed
in procedural code which is appropriate for the sequential
operations performed in the experiment,. INITIAL and
TERMINAL regions. The DYNAMIC region describes the

parallel processes which represent the physical system
being simulated. The region is divided into two main parts
the model definition section and the communication section.

Model definition section: the model definition section has

the task of defining the set of model variables of class
algebraic or history. ©No other variable may be defined in
this section. All algebraic and history variables must be
defined by a single statement (which may be a compound 'if'
or 'when' statement) in the section and may not be defined
by more than one statement. Each statement of the section
defines a 'block' which may be regarded as a physical

element of the real system being simulated. Therefore each
statement defines one or more outputs in terms of one or more
inputs. -

-14-



Submodel invocation: A physically identifiable system block

may be treated as a separate entity in the simulation as
well as being physically separate from the remainder of
the real system being simulated. Such a block may be
represented by a submodel! For example, it may be
appropriate to represent the controller of a machine by a
submodel and, of course, if desired the machine itself by
another submodel. A submodel has a similar structure to a
model, and an experiment-model relationship is similar to
a mode-submodel relationship. The latter is, however,
more intimate in that information is communicated between
model and submodel during each execution of the model
definition section of the DYNAMIC region. |

A spin-off from this approach is that a collection, or
library, of submodels may be created and freely used in
different simulations. This demands that a submodel

does not depend on the environment from which it is invoked
except by information communicated by an argument list or
by the pre-defined simulation environment. It should also
be made clear that if a submodel is invoked more than dnce
in the model definition section that separate identical
subsystems are being represented. In these cases no conflict
arises between the separate invocations of the same
submodel. The submodel concept replaces the need for the
MACRO of the original CSSL specification.

A submodel representing a subsystem CONTROLLER with outputs
Yl and Y2 and inputs, X1, X2, X3 and X4 may be invoked by
a statement of the form:

CONTROLLER (Y1, ¥2:= X1, X2, X3, X4);

A subsystem LAG with a single output Yl and two inputs X1
and X2 may be invoked by either:

-]15=-



IAG (Yl:=- X1, X2);

or by

This second form of invocation could be embedded in an
arithmetic expression. Standard submodels are provided
and the example model given earlier used the INTGR
standard submodel.

- Sorting: The model definition sec¢tion is computed, possibly
several times, before the integration system is able to
produce satisfactory solutions for a new value of the
independent variable. Each computation of the section is
known as a DYNAMIC pass. Statements of the section may be
automatically sorted so that they are executed 1in a
sequential order which ensures that all inputs to a block
are known prior to the block code computation. During this
sorting process advantage is taken of the property of
history variables that their values are known, without
computation, at the start of the DYNAMIC pass.

Communication Section: The communication section is auto-

matically executed at the initial value of the independent
variable (T), and after the integration system has produced
solutions at values of independent variable which have
changed by an amount equal to the communication interval
(CINT). That is, the communication section is invoked at
communication points which occur following each integration
period of CINT.

This section has the function of allowing information inter-

change between the simulation process and the outside world,
and also imposing some control over the simulation. In

-16-



the case of parallel simulation segments (see later)
information is also exchanged between the segments.

The statements in the communication section are procedural
language statements with the addition of a number of
simulation operations. The following indicates some of the

simulation operations which are available:

TABULATE T, RESULT, X;

produces a heading at the start of a run and then
outputs T, RESULT and X to the terminal or nominated
device at each subsequent communication point.

PREPARE T, X, X';
saves values of T,X and X' at each communication
point for subsequent analysis or plotting.

pLoT T, X, 0.0, TFIN, 0.0, 160.0;
produces a graph of X against T as the simulation
proceeds.

TERMINATE RESULT>1000.0

causes the simulation to terminate when the condition
becomes true and for control to be passed to the terminal
region. A default TERMINATE statement of the form

TERMINATE T>=TFIN

is always active

Of the above statements only PREPARE could appear in another
program section.

Data may be read from a file in this section to set a
simulation parameter. Such a parameter would remain constant
until the next communication point where it could be

updated by further information from the file.

-17-



3.4 Advanced language features

This description shows how the basic simulation features
already described are extended to provide advanced features.

3.4.1 Parallel Simulation Segments

Segments are introduced to provide facilities to employ
multiple parallel processors to simulate a physical system.
The same mechanisms allow real hardware, such as an electronic
controller, tao form part of the simulation. In addition
simulation on a conventional sequential computer can employ
different integration algorithms for the solution of

different parts of the real system.

The following partial simulation model shows how parallel
segments are invoked.

DYNAMIC
process CONTROL (FIELD:=SPEED,REFERENCE) ;
process MACHINE (SPEED:=FIELD);

communication

This example shows that a machine and its control are

- simulated separately and only interchange information at
communication points. The CONTROL segment could be real
electronic hardware, or, in fact, the machine could be

a physical machine. Where the segments are simulations
rather than actual physical hardware the definition of

a segment is similar to that of a model.

The definition of a segment only differs from a model in

the following respects:

-18-



(a) The keyword MODEL is replaced by SEGMENT.
(b) There is no TERMINAL region in a segment.

(c) The pre-defined simulation environment for a segment
differs from that for a model.

In a segment the following predefined variables are
accessible but may not be changed from within the segment:

T, CINT, TFIN

It is the responsibility of only the controlling model to
set and act upon these variables,

Each segment has an independent set of other reserved

variables which allow the segment to specify its own integration
method and associated integration control. Such integration
must be capable of synchronisation with the calling model's

CINT specification.

Where segments are executed on a conventional sequential
computer it does not matter which segment is computed
first. Each segment integrates its equations for a period
of CINT and then, and only then, is information extchanged
through the segment arguments.

A model definition section which contains a segment

invocation cannot contain any other statements except further

segment invocations.

3.4.2 The Submodel definition

A submodel may be invoked from the model definition section
of a model, the same section of a segment or another sub-

-19-



model. The form of a submodel specification is similar
to a segment with the following differences:-

(a) The keyword SEGMENT is replaced by SUBMODEL.

'(b) The submodel has access to the pre-defined simulatiocn
environment but it may not change any of the reserved
variables. It has read-only access to reserved
variables.

(¢c) A segment may only be invoked once by a model whilst
the same submodel may be invoked several-times from’
a model, segment or other submodel.

The relationship of a submodel to its calling model or
segment is more intimate in that information is interchanged
during each DYNAMIC pass.

As segments may be executed on different processors the
variables which are local to a segment are clearly private
to the segment and the processer on which they arescomputed.
The same rule applies to submodels in that local variables
are private to a particular invocation of the submodel.

For example, if a submodel is invoked twice and it defines
and uses a local variable Q then the storage unit associated
with Q for the first invocation is a separate storage

unit from that used for Q in the secord invocation.

In the original CSSL specification MACROs provided users
with a feature which was, in some respects, similar to the
submodel. The specification demanded that a macro-text
expansion mechanism be used. We, however, do not force

such an implementation nor, on-the-other-hand, preclude

the possibility of implementing submodels using text
substitution macros. It should be noted that Ada procedures
may either be treated as subroutines in the FORTRAN sense

-20=



or expanded 'macro style'. The same definition of the
procedure is employed independent of the implementation

route.

3.4.3 Discontinuities

Discontinuity statements may appear in the model definition
sections of models, segments or submodels. These statements
permit discontinuities to be accurately and efficiently
modelled (4y5) in an qnambiguous fashion. Common dis-
continuous élements will be represented by standard sub- \
models.available in a library of special simulation functions.

Basic discontinuities: To illustrate how such discontinuous

elements are represented let us consider the example of a
simple limiter in which the output Y is defined as:

Y = UL when X > UL
Y = LL when X < LL
Y = X at other times

This limiter may be represented by the following program

statement»'

Y:= if X > UL then UL
else if X < LL then LL

else X;

The discontinuity detection mechanisms which work in
conjunction with the integration process detect when the
~relational conditions (day X > UL) become true or false,
The detection, however, pin-points when the relation
changes state (say false to true) ®o within a certain error
bound. For example, the default error bound of 0.001 means
that X may be as large as UL + 0,001 at the point where

-21-



the relation X > UL is detected as becoming true. It is
because of this error bound that the relational operators
equal and not equal are not allowed. The allowable
operators are: >, <, >= <=,

The user may adjust the error bound to suit a particular
problem by using the following extended form of dis-
continuity statement.

¥Y: = if X >/0.01, 0.005 / UL then UL
else if X </0.000l / LL then LL
else X;

This means that:

X > UL is detected as becoming true when X changes
from a value where X g UL to a value in the range
UL < X < (UL + 0.01). ’

It is detected as becoming false when X changes
from a value where X > UL to a value in the range
UL 3 X > (UL - 0.005)

The formulation of the equations for the above limiter
could cause problems in rare cases due to the fact that
there is a small (less than the error band) instantaneous
change in the output Y as it becomes limited. For example,
as the device goes into the limited state there may be an
instantaneous change from, say, ¥ = UL + 0.0057 to Y = UL.
This problem may be overcome by a reformulation of the
limiter as follows:

Y: = if X < = UL and X >

LL then X;



This form of statement allows Y to retain the value it

had at point the discontinuity was detected and the device
switched to the limited state. To avoid the problems
associated with starting a simulation with the device in
the limited state it is necessary to initialise Y in the
INITIAL region. The need to have such an initialising
statement in the INITIAL region which is separated from
the discontinuity statement in the DYNAMIC region can be
regarded as a nuisance.

Using submodels to represent discontinuous elements allows
the latter problem to be overcome in the following manner:

SUBMODEL LIMIT (Y:=X, LL, UL);
INITIAL o
if X > UL then Y:=. UL
else if X <LL then Y:= LL
~else Y:=- X;

DYNAMIC
Y= if X < = UL and X > = LL then X;
END;

This submodel could be invoked by:
OUT:= LIMIT (IN, LOW, HIGH);
RESULT := INTGR (LIMIT(IN1, LOWl, HIGH1), 0.0);

LIMIT (OUT2:= IN2, LOW2, HIGH2):

Note that there may be any number of invocations of the
same submodel!

Discontinuity triggers: A second form of discontinuity

description allows the change to trigger a certain action.
Consider the example of a comparator where:

-23-



1.0 if X > limit
0.0 otherwise

KO
(|

This could be programmed using the 'if-assignment' form,
that is

Y:= if Y > limit then 1.0 else 0.0;

This comparator has the characteristic that its output
only changes when the discontinuity occurs, that is, when
the relation Y > limit either becomes true or becomes
false. The following (illegal) form of an 'if' assignment
gives an appropriate description.

relation:= X > limit:;
Y+= if relation changes to true then 1

else

if relation changes to false then O;

The 'when' assignment form is provided to do this task.

Y= when X > limit then 1 else O;

This sets Y only when a change occurs in the relation
X > limit. The form:

when relation then
is interpreted as 'when the relation becomes true’ and
the else clause as 'when the relation beccmes false', If
there is no change in the relation then no operation is

performed.

A function to calculate the approximate rate of change of
a variable illustrates the need for a further extension.

-24=-



Consider
RATE = (X-Xlast)/(T-Tlast)

There must be a mechanism to allow Xlast and Tlast to

be updated dufing a DYNAMIC pass which follows the
completion of an integration step. That is, when results
are valid and the pass is not an iterative pass which is
being used by the integration system as part of its
calculations to produce the next valid (end~of-step)
results. The following statement form is proposed

which uses a 'when' assignment formation and a reserved
logical variable VALID_STEP to determine whether action
is required.

Ylast:= when VALID_STEP then X;
Tlast:= when VALID_ STEP then T;

(Note that an 'if' instead of 'when' could be used although
the 'when' shows the transient nature of VALID STEP).

A more compact way of expressing the last two statements
would be:

when VALID_ STEP then

Xlast:= Y;
Tlast:= T;

end when;

This form or the original form, of statement do not require
sorting because they only have the job of updating history
variables Xlast and Tlast. History variables have correct
values on every entry to the DYNAMIC pass. The above
statement implies that, prior to the next pass, the
updating must take place, and it does not mean that Ylast

-25=-



is updated during the actual DYNAMIC pass.

An 'else when' and an 'else' clause are acceptable
extensions to the 'when' statement.

A normally difficult to program hysteresis function is
easily specified with the new statement forms.

¥Y:= if X > Ylast + UL then X - UL
else if X < Ylast + LL then X-LL

else Ylast;

Ylast:= when VALID_STEP then Y;

Non assignment conditional statements

The simple 'if' or 'when' assignment form of statement is

suitable for many discontinuous functions but is somewhat
cumbersome for more complex types. In these cases the
 statement form of 'if' or 'when' is more appropriate.
Consider code to produce a pulse train (1 or 0) in which
the output is 1.0 (on) for'Ton'time and then 0.0 (off) for
'Toff' time.

when T 3z Tnext then if Y = 0.0 then Tnext:=T+Ton;

Y:= 1.0;

else Tnext:=T+Toff;
Y:= 0.0;

end if;

end when;

-26-



The statements included in both the ‘igi or 'when' compound
statements are procedural statements. This gives »
considerable flexibility for the users to construct their
own models of any complexity.

-27=



4. CONCLUSIONS

This paper has attempted to provide a fairly detailed
outline specification for a new standard for continuous
systems cimulation languages (SsSL 81). There are still
many areas of detail which have not been fully discussed.
In fact, when the implementation study has been completed
the authors believe it may be necessary (or advisable) to
add further features.

Further mandatory declarations are candidates for inclusion
on the basis that (a)it is good programming practice and

(b) that the translator can be simplified and made more
efficient. Diagnostic features have not been discussed

but it has been assumed that a CSSL should provide, at least,
as good diagnostic and trace features as modern FORTRAN
Systems (see DEC's VAX or PRIME's FORTRAN aids). The
extent to which Ada should be adopted as the procedural
language has been left as an open question. This paper has
taken the view that only those features that are necessary
should be included. For example, the authors concede that
Ada procedures, with Ada scope rules, may well have a part
to play in a new CSSL specification. Clearly further
discussion is required to determine the subset of Ada which
is most appropriate for a CSSL. This decision and the form-
ulation of a strict and complete specification is extremely
important if the language is to prove acceptable to users,
practical to implementors, and is sufficiently standard to
provide portability for simulation programs,

This paper has concentrated discussion on the concept of
building simulation programs from the sound foundations
provided by : models, segments, submodels, strict model
definition, comprehensive discontinuity facilities and the
ability to use standard libraries of mathematical functions
and subprograms.

-28~-



5. ACKNOWLEDGEMENTS

The authors wish to acknowledge the contribution to the
formulation of the above proposals made by colleagues at
the University of Salford. The authors also wish to
acknowledge the value of discussion and encouragement given
by J.G. Ferrante previously of the European Space Agency,
ESTEC, Noordwijk, The Netherlands, and now with MATRA,
Toulouse. Some of the work on which this report is based
was carried out under European Space Agency Contract and

their support is gratefully acknowledged.

6. REFERENCES

1) '"The SCi Continuous System Simulation Language (CSSL)'
Simulation, Vol.9, No.6, Dec. 1967.

2) 'Preliminary Ada Reference Manual' Sigplan Notices,
Vol.l4,No. 6, June 1979.

3) Hay, J.L., 'A new CSSL Standard - An implementation
view!, UKSC Conference on Computer Simulation,
Harrogate, 1981. :

4) Hay, J.L., Crosbie, R.E. and Chaplin, R.I.:'Integration
subroutines for systems with discontinuities'’ :
Computer Journal, Vol.l7, No.3, 1974.

5) Hay, J.L. and Griffin, A.W.J.: 'Simulation of dis-
continuous dynamical systems', SIMULATION OF SYSTEMS '79
Ed. L. Dekker et al, North Holland Pub. Co., 1980.

6) Cellier, F.E.:'Combined continuocus/discrete system
simulation by use of digital computers', Doctural
dissertation, ETH Zurich, 1979.

7) 'ISIS.80 User Manual', Simulation Systems, The Gables,
North End, Yatton, Avon, 1980.

-29-



